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INTRODUCTION 

Theorists have a great deal of success in calculating, 

from first principles, the energy levels of simple gaseous 

atoms and in correlating these states with many physical 

properties of gases. When the atom is in the condensed state 

such as a crystalline solid, it is subjected to electromag­

netic fields due to neighboring atoms which profoundly effect 

the energy states of the system. Also many quantum effects, 

such as interatomic electronic exchange, which may be neg­

lected in gases, become very important in the condensed state. 

In attempting to solve the symbolic equations as applicable to 

the solid state, the theorists have made various simplifying 

assumptions, and considerable controversy exists in the 

literature concerning their validity. One such assumption 

called the crystal field, or ligand field approximation, 

neglects the finite structure of neighboring electric dipoles, 

and the exchange interaction between the unpaired electrons 

of the atom in question and electrons of neighboring atoms. 

The electric field due to these dipoles is then treated as a 

perturbation (1) on the atomic energy levels of the atom in 

question, where these energy levels have been calculated 

using atomic wave functions. The neglect of the exchange 

interaction implies that the electric field satisfies 

Laplace's equation in the region of the atom whose energy 

levels are being calculated. If the wave functions of the 
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neighboring dipole systems and the electrons being perturbed by 

the electric field did over-lap, then the electric field would 

no longer satisfy Laplace's equation in the region in question. 

In this case, molecular rather than atomic wave functions 

would have to be used to obtain a solution to the problem. 

Using the crystal field approximation in practice, one 

does not usually solve the problem from first principles, 

because the calculation involves an exact knowledge of radial 

wave functions. Instead, the solution is separated into 

angular and radial contributions, and the radial contribu­

tions are fed into the calculation as experimentally deter­

mined parameters. The number of parameters is always small 

compared to the number of levels one calculates, so the 

calculation is not trivial. This approximation has led to 

"results which are in fair agreement with experiment in the 

case of some magnetically dilute cubic salts of the iron 

group (2) and in good agreement with the splittings of the 

basic level of the ground term in magnetically dilute rare 

earth salts (3). Very seldom, however, has an attempt been 

made to correlate the so called crystal field splittings of 

all of the term values for any given rare earth salt, or even 

all of the splittings of the basic term (4). 

The rare earth salts, whose 4f electrons are partially 

shielded by the 5s and 5p shells from exchange interaction, 

present the ideal physically limiting case in which to test 
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the validity of the crystal field approximation in its entire­

ty. It is generally inferred from physical evidence (5) that 

the 4f electrons of the rare earths do not take part in 

chemical bonding unless first promoted to outer subshells, and 

it has been established (6) that the sharp absorbtion line 

spectra of the rare earths at low temperatures is due to 

transitions within the 4-f shell. While the energy states of 

rare earth ions arise from all the electrons and atoms in the 

solid, the differences in the energy levels arise from inter­

actions involving only the 4fn electrons, since any contribu­

tions from neighboring atoms and other electrons are assumed 

to be nearly the same for the initial and final states. 

Therefore, in most calculations involving these levels, one 

needs only consider the electrons in the incomplete hf shell. 

Hund has shown (6) that at room temperatures, the behavior of 

these levels can be predicted to a good approximation by 

making the calculation for the gaseous ion. The crystal field 

splitting must therefore be able to be treated as a perturba­

tion of the L*S coupling, and this is the starting point of 

the calculation in the rare earths. 

Certain physical properties such as the magnetic 

susceptibility and the magnetic contribution to the specific 

heat may be calculated once the energy levels of a system are 

known. It is the purpose of this work to determine experi­

mentally, for the nine hydrated ethylsulfate of thulium, these 
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properties in a temperature range in which they may be expected 

to be dependent on the energy level structure. Once these data 

have been obtained, they can be compared with the presently 

published experimental work, and theoretical work involving 

the crystal field approximation. Elsewhere in the Ames 

Laboratory the energy levels of rare earth salts are being 

determined from absorbtion spectra, and once a complete 

identification of observed lines has been made, precise 

calculations can be made for comparison with thermal, magnetic 

and spectral data. 

The nine hydrated ethylsulfate of Tm, hereafter referred 

to as TmE.S., was chosen for four reasons as the salt to 

measure. The first was that the crystal structure was known, 

and the salt was sufficiently magnetically dilute to allow one 

to make the assumption that no direct exchange interaction 

would occur between magnetic atoms (7), (8). The second was 

that the crystal field matrix elements have been calculated in 

terms of four crystal field parameters (9), (10), (11), (12), 

and the energy level calculation is relatively simple. The 

third was that this is one of the salts whose absorbtion 

spectra is presently being investigated in this laboratory, 

and the fourth was that paramagnetic resonance data have given 

no information concerning the crystal field splittings in this 

salt, except the negative inferrence that the ground state of 

the basic term is a .singlet. 
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The procedure for obtaining Cm, the magnetic specific heat 

of TmE.S., was to measure the heat capacities of TmE.S. and 

LuE.S. and to make a reasonable assumption concerning the 

difference in the lattice contributions of the two salts such 

that Cm could be obtained by the proper subtraction. The 

magnetic susceptibility was obtained by measuring the change 

in mutual inductance due to the presence of the sample in a 

mutual inductance coil. Single crystals were used for the 

measurement, so that a susceptibility could be obtained 

parallel and perpendicular to the c axis of the crystal. 
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REVIEW OF LITERATURE 

This review will consist of six sections: spectra, 

magnetic properties, specific heat measurements, crystal field 

theory, paramagnetic resonance work, and quantum mechanical 

calculations of configuration energies. Each section will be 

reviewed chronologically. The breakdown is necessarily some­

what artificial, since many pieces of work correlate two or 

more of the above sections. It is felt that the separation 

will be to the advantage of the reader, however, because of 

the great amount of material covered. The order of presenting 

the sections was chosen to approximately follow the chronolog­

ical order of the development of our knowledge concerning the 

energy structure of rare earth ions in salts. This too must 

obviously be an unrealistic ordering because of the simulta­

neous development of theory and experimental work. The 

ordering is somewhat interesting, however, because it 

accentuates how in some cases the experimental work was 

carried out long after the quantitative theory was developed, 

and no recourse to anything resembling a quantitative calcula­

tion was made by some experimentalists. 

Spectra 

A few definitions will be needed to avoid confusion 

concerning terminology used in this review and throughout this 

work. A "term" is taken to mean the (28 + 1)(2L + 1) states 
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belonging to a given configuration. An example would be % 

12 associated with a 4-f configuration. Here, S is 1 and L is 5« 

"Term intervals" will be taken to mean energy differences 

between terms. An example would be the energy differences 

between % and ̂ F. "Term splittings" will refer to energy 

differences between states of a given term, where here "state" 

means a term symbol with a given J value. An example of a 

term splitting would be the splitting of ̂ H into the %£, 

and states. "Crystal field splittings" will refer to the 

splitting of a state into two or more of its 2J + 1 components. 

Becquerel, (13 to 22) was one of the first observers to 

realize that the bands observed in the absorbtion spectra of 

the rare earths could be sharpened with decreasing temperature 

and moved with a magnetic field. Herzfeld (23) suggested that 

these lines were caused by a Stark effect on the vibrating 

rare earth atoms penetrating the electric field of neighboring 

atoms. Bequerel (24) later made a similar suggestion. Hund 

(6) first calculated the magnetic moments at room temperature 

with the assumption that the rare earth atom existed as the 

free ion, and Freed and Spedding (25), (26) were one of the 

first to attempt to correlate Hund's work with the spectra of 

the salts. Freed (27) followed this with further measurements 

on the ethyl sulfates of Ce, Pr, Nd, and Gd, and suggested that 

the transitions for all but Ce were within the 4f shell. At 

about the same time, Spedding and Nutting (28) measured the 
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spectra of various salts of Gd and found similar term 

splittings of the various states with different anions. 

Spedding (29), and Freed and Spedding (30) suggested that the 

lines in Gd at low temperatures were caused by the electric 

field within the crystal. Uzmasa (31) also observed the shift 

in spectral lines of rare earths in solution with change in 

anion and suggested the shift was due to the anions. Further 

qualitative work of this type was carried out by Freed (32), 

and Spedding and Bear (33)» 

Prandtl (34-) measured the absorbtion spectra of TmCl̂ , in 

solution and reported term splittings, but no crystal field 

splitting. Ellis (35) noted that the rare earths may be the 

first case of electronic transitions causing color in solids. 

In 1937, Bethe and Spedding (36) definitely established that 

the absorbtion spectra of hydrated thulium sulfate could be 

attributed to transitions within the kf shell, and in the same 

year the absorbtion spectra and crystal field splitting of 

Nd̂ (SÔ .)̂ .8B̂ O was measured by Spedding, et al. (37)« Merz 

(38) noted that the properties of free rare earth ions are not 

shifted greatly in compounds, and Joos and Ewald (39) 

speculated that the lines in rare earth spectra might be 

caused by a vibratory type interaction between the metal atom 

and surrounding atoms. Spedding, .et al. (4-0) found three low 

lying levels in octa hydrated praesodymium sulfate that were 

not in disagreement with the crystal field calculations of 
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Penny and Schlapp (4l). Van Vleck (42) calculated the proper­

ties of the rare earths using the free ion model, and 

suggested that the spectral lines were caused by transitions 

in states not involving a change in electron configuration. 

Spedding (43) correlated the spectral and magnetic work on 

MCI3 and found good or bad agreement with the work of Penny 

and Schlapp (41) depending upon whose magnetic data were used. 

Spedding and Hamlin (44) then measured the splitting of the 

ground state of NdC1̂ .6H20. Merz (45) carried out measure­

ments of absorbtion spectra on rare earth ethylsulfates, 

and some further work was accomplished by Ewald (46). Meehan 

and Nutting (47) measured absorbtion spectra of octa hydrated 

Er, Dy, Ho, and Im sulfates and stated that the sharp lines 

were due only to transitions within the 4f shell. Freed, et 

al. (48) measured the spectra of Eu in some co-ordination 

compounds and explained their results using the symmetry of 

the electric field within the crystals. 

A review of the emission spectra of the rare earths was 

made by Meggers (49) in 1942. Broer, et al. (50) obtained 

term splittings of trivalent Pr, Tm and Yb, and Broer (51) 

later gave a qualitative discussion of rare earth absorbtion 

spectra using the results of Bethe (1) who 15 years previous 

to this, had set up the quantitative basis for the calcula­

tions involved. Most of the above work has been reviewed in 

context by Yost, Russel, and Garner (52). Work on the 
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absorbtion spectrum of Er has been carried out by Severin (53) > 

(54). Hoonschagen and C-orter (55) have obtained term 

splittings for trivalent Er from the absorbtion spectrum of 

erbium nitrate in solution, but made no mention of crystal 

field splitting. Gobrecht (56) measured the absorbtion 

spectrum of octahydrated thulium sulfate and obtained term 

splittings essentially in agreement with Bethe and Spedding 

(36). Freed and Hochanadel (57) measured the spectra of some 

rare earth salts which remained fluid at 78°K, but no quanti­

tative statements were made concerning the results. Work on 

the absorbtion spectrum and crystal field splittings of ground 

and excited terms of trivalent Eu in the hydrated chloride and 

bromate was carried out by Hellwege and Kahle (58) and 

Geisler and Hellwege (59) who calculated the matrix elements 

of the crystal field potential in terms of the splitting that 

was observed. Hellwege and Hellwege (60) found three lines 

in the spectra of trivalent Pr which were attributed to the 

crystal field splitting of the ground state, The Zeeman 

splittings of single crystals of praesodymium magnesium nitrate 

and neodymium zinc nitrate were measured by Brochard and 

Hellwege (61) and were quantitatively interpreted in terms of 

a crystal field of Ĉ y symmetry with fair success. The g 

factors were experimentally determined rather than calculated 

from first principles. Theoretical work on thulium sulfate 

octahydrate was carried out by Paskin and Keller (62) in an 
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attempt to understand the spectral data, and the magnetic 

susceptibility of the salt was calculated. Dieke and Heroux 

(63) carried out further spectral measurements on salts of 

neodymium, and interpreted the two lowest Zeeman splittings in 

terms of the crystal electric field. They essentially used 

the data to calculate the wave functions for the split states. 

Absorbtion spectra of the hydrated fluoride and chloride 

of Pr were qualitatively interpreted by Freed and Sayre (6k) 

in terms of crystal fields of C2v and symmetry, respec­

tively, and Jgfrgensen (65) carried out the same type of work 

on NdtBrOgĵ .SHgO. The absorbtion spectrum of hexahydrated 

holmium and erbium chlorides was measured by Kahle (66) and 

the results explained on the basis of a crystal field having 

C2 symmetry. Jtfrgensen (67) also measured the spectrum of 

erbium in solution, but was able to give no quantitative 

information concerning assignments of L, S, and J quantum 

numbers for the bands observed. The absorbtion spectrum of 

PrClg.6H20 was reported by Judd (68), who quantitatively 

interpreted the results in terms of a calculation involving 

a crystal field of symmetry, and a partial breakdown of 

Russell Saunders coupling for the excited levels. He was able 

to obtain good agreement between theory and experiment for the 

splittings of the basic state, Cook and Dieke (69) 

measured the absorbtion spectrum of trivalent Gd and obtained 

term assignments, but mentioned no crystal field splitting. 
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The absorbtion spectra of thulium ethylsulfate was measured by 

Johnsen (70) who picked up transitions from the basic to higher 

states, and a splitting of the ground state at 33 cm""\ 

Measurements on Nd solutions and salts were carried out by 

Krumholz (71) who, even as late as 1958, was content to report 

that a similarity existed between the salt and solution bands. 

Carlson and Dieke (72) obtained term splittings, and splitting 

of the ground state of neodymium chloride from fluorescence 

spectra. Ko attempt was made to correlate the data with the 

crystal field approximation. The fluorescence spectra of an 

Yb impurity in a CaFg crystal was measured and analyzed by 

Feofilov (73). Term intervals and splittings, and crystal 

field splittings were determined for ions of Ce, Pr, Nd, 3m, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb from an analysis of the 

fluorescence spectra of rare earth activated phosphorous by 

Keller (74-), and Keller and Pettit (75). The crystal field 

splittings were not quantitatively correlated with current 

crystal field theory. Kahle (76) has recently measured the 

spectra of Eu in the bromate and chloride salts and correlated 

the results with the crystal field approximation. He essen­

tially evaluated the crystal field matrix elements of the 

lowest states from the spectral data. Gruber and Conway (77) 

have measured the absorbtion spectrum of thulium ethylsulfate 

and picked up splittings of the ground state at 33, 195 and 321 

cm~l. They also calculated term splittings and intervals and 
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compared them, to within 200 cm~\ with the lines that they 

observed. They found that one must consider intermediate, 

rather than pure Russel Saunders coupling, for a reasonable 

agreement between calculated and experimental term splittings. 

Magnetic Properties 

In 1921, Wedekind (78) was one of the first to plot 

effective magneton number versus atomic number for the rare 

earths and obtain the curve, later published by Van Vleck (5), 

with maxima at Nd and Dy. The work prior to 1930 by Cabrera, 

Meyer, Duper1er, Zernicke and James, Decker, and Williams has 

been tabulated and discussed by Van Vleck (5)• The result of 

this work is that all the rare earths with the exception of 

Sm and Eu, have magnetic moments at room temperature which are 

in fair accord with the lowest J value calculated assuming 

Russell Saunders coupling. 

The theoretical and experimental work, by Kramers and 

co-workers, on the magnetic properties of rare earth salts, 

has recently been collected and published, along with the rest 

of Kramers' work, by the North Holland Publish Co. (79)• 

Kramers succeeded in setting up the theory relating the energy 

structure of the rare earth ions to their magneto optical 

properties, but the experimental work on the Faraday effect was 

such, that at the time no extensive definitive conclusions were 

reached concerning the detailed relationships between energy 

levels and magneto optical rotary power. Most of the later 
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workers turned to the spectra for a more straight-forward 

approach to the problem. 

In 1931, Gorter (80) tabulated the theoretical work of 

Hund, Laport and Sommerfeld, and Bose and Steiner for compari­

son. All authors agreed roughly that the magnetic moments of 

the rare earths at room temperature could be obtained from a 

free ion type calculation. Klemm, et al. (8l) measured the 

room temperature magnetic moments of La, Ce, Pr, Nd, and Sm 

hexaborides, and found that the magnetic moments were consist­

ent with the free ion value. Williams (82) found that some Gd 

and Nd salts obeyed a Curie-Weiss law near room temperatures, 

and tabulated values for the Curie-Weiss A. The same type work 

was carried out on the octahydrated sulfates of Tb, Dy, Ho, 

and Er by Velayos (83), and on Nd20̂  and Pr and Nd sulfates by 

Cabrera, et al. (84-). The magneto-rotary power of nine hy­

drated ethylsulfates of Pr, Nd, Dy and Er was measured by 

Becquerel (85) in 1935? who found that the ratio between the 

magnetic moment and the rotation of plane polarized light 

through the crystal was a constant. In the same year, Fereday 

and Wiersma (86) measured the principle susceptibilities of 

single crystals of Ce, Pr, Nd, and Er ethylsulfate nine 

hydrate, and found the parallel susceptibility to be greater 

than the perpendicular susceptibility in the range 14—200°K for 

all except Pr ethylsulfate, the only one having an even number of 

4-f electrons. A year later, Mazza and Botti (87) reported 
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the room temperature susceptibility of a mixture of SmgÔ  and 

GdgCy. Cabrera (88) reported susceptibility measurements on a 

number of rare earth salts and found that all could be fitted 

with a Curie-Weiss curve. Some single crystal work on octa­

hydrated neodymium sulfate was done by Krishnan and Mookherji 

(89) in 1938 and the anisotrophy of the crystals interpreted 

in terms of a non-cubic crystal field. In 1939 Jackson (90) 

measured the susceptibility of a single crystal of octahydrated 

neodymium sulfate in the range 14—300°K, and found excellent 

agreement with Krishnan and Mookherji's data. He made no 

calculations, however, to relate the results to the electric 

field in the crystal. In the same year, Penny and Kynch (91) 

attempted to reconcile the spectral and magnetic data on 

Nd2(SOĵ .8H20 using a cubic crystal field, but were 

unsuccessful in doing so. Freed (92) made some more qualita­

tive statements concerning the relation between the magnetic 

properties of rare earth ions in salts and solutions, and the 

symmetry of the surrounding crystal field. Host of the 

important magnetic work on the rare earths prior to 194-1 has 

been summarized by Yost, Russell, and Garner (52). 

In 194-2, Van den Handel (93) measured the perpendicular 

and parallel susceptibilities of neodymium ethylsulfate and 

found deviations from Curie's law below 200°K, but did not 

interpret the results as caused by a trigonal crystal field. 

Subsequently, in 1953» Elliot (4-) calculated the susceptibility 
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of this salt and found excellent agreement between the 

calculations made by Elliot and Stevens, and Van den Handel's 

results. The Elliot-Stevens crystal field calculations will be 

reviewed under "Review of Literature, Crystal Field Theory". 

Some single crystal susceptibility measurements on 

magnetically dilute salts of Ce, Pr, Nd, and Sm were carried 

out by Mukherji in 1949 (94). He found that the axis along 

which the maximum susceptibility was measured varied as a 

function of temperature. The maximum variation was found to 

be 63° in the case of Pr̂ g-̂ NÔ )̂ »̂  ̂ was of the order 

of 10° for similar salts of Ce and Nd. No variation was 

reported in the Sm salts which were measured. 

In 1955» Satten and Young concluded from susceptibility 

measurements on octahydrated sulfates of rare earths (95) that 

the crystal field in these salts was not cubic, as had been 

previously supposed. The results of the Faraday effect on 

ethyl sulfate s of Ce, Pr, Sm, Gd, Dy, and Er were reviewed by 

Van den Handel (96) in 1956, but no crystalline field interpre­

tation was given. In 1959 the susceptibilities of PrgÔ  and 

TbgOj were measured from 100 to 600°K by Vickery and Ruben 

(97) and it was observed that the Curie-Weiss law was obeyed, 

and that the magnetic moments corresponded to that of the free 

ions. In the same year, Mookherji and Neogy (98) discussed 

the assymetry of the crystal field of EugOÔ Jg.SHgO as 

evidenced by the magnetic anisotropy that they found in the 
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crystal. They too concluded that the crystal field in this 

type of compound was not cubic. 

Ayant and Thomas (99) calculated the magnetization of Yb 

in ytterbium iron garnet assuming the Yb ion to be in a cubic 

crystal field, and found good agreement between theory and 

experiment. The susceptibilities of gallates of Pr, Nd, and 

Er were measured from b-300°K by Cohen and Ducloz (100), who 

reported that Curie's law was not followed at low temperatures. 

Specific Heat Measurements 

Relatively little work has been reported on calorimetric 

measurements of the specific heats of rare earth salts, 

possibly because of the difficulty involved in separating a 

large lattice contribution from a small electronic contribu­

tion. The method of paramagnetic resonance (101), however, 

has been recently used in some cases to obtain ground state 

splittings from which specific heat curves have been 

calculated. 

The first attempt to obtain Schottky type anomalies which 

agreed with previous crystal field splitting data for rare 

earth salts was made by Ahlkberg and Freed (102). These 

workers measured Cp of octahydrated samarium sulfate in the 

range 14-300°K, and obtained a peak at 100°K which agreed with 

the ground term splittings measured by Spedding and Bear (33). 

The heat capacity of octahydrated gadolinium sulfate (103), 

(104) was used to obtain the lattice contribution of the Sm 
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salt. Later, Ahlkberg, et al. (105) measured the heat 

capacities of octahydrated Sm sulfate and octahydrated Nd 

sulfate from 3-40°K and found no evidence of an electronic 

transition in the Sm salt, but evidence of the 77 cm"̂  level 

found by Spedding, et al. (37) in the Nd salt. 

In 1953) Daniels (106) gave formulae relating the suscep­

tibility and entropy of a paramagnetic salt, which could be 

used once the dipole-dipole interaction between magnetic ions 

was known. The formulae appeared to work quite well for Nd 

ethylsulfate below 4°K, but not for Ce ethylsulfate, implying 

that exchange effects were coming into play in the Ce salt at 

low temperatures. The magnetic heat capacities of Nd and Ce 

ethylsulfates were obtained from the paramagnetic resonance 

data of Bleany, et al. (107) and Cooke, _et al. (108). Subse­

quently Cooke, jgi al. (109) measured the paramagnetic resonance 

of Ce magnesium nitrate from 104°K and were able to satisfacto­

rily account for the specific heat obtained from the observed 

splitting in terms of magnetic dipole-dipole interactions. 

It would thus appear that the more magnetically dilute crystals 

of C e2Nĝ (NÔ )22•24H2O do not undergo magnetic exchange type 

interactions as does Ce(C2̂ 801̂ )3.9H20 below 4°K. The 

relationship between strong magnetic exchange interactions and 

inter-magnetic dipole distances has recently been discussed by 

Sato and Kikuchi (110) and it might be of interest to corre­

late the data on these two Ce salts with their conclusions. 
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The specific heat of Yb ethylsulfate has been measured 

by Cooke, et al. (Ill) and the statement was made that no 

Schottky type contribution existed below 20°K. Horst Meyer 

and P. L. Smith (112) measured the heat capacities of La, Pr, 

Nd, Dy, Yb, and Y ethylsulfates in the range 1.3-20°K and 

found the thermal data to agree well with results obtained 

from paramagnetic resonance data and the crystal field theory 

of Elliot and Stevens, which will subsequently be reviewed. 

Goldstein, et al. (113) measured the specific heats of 

Lâ Ô  and Nd̂ Ô  and reported evidence of a bump in the Nd 

oxide. No interpretation was given. The specific heats of 

PrClg.SHgO and LaCl̂ .ôĤ  were measured by Hellwege, et al. 

(114), in the range 4.8-280°K, and the magnetic contribution 

of the Pr salt was obtained by assuming that the lattice 

contribution was the same for both salts. A Schottky type 

bump was picked up at 10°K which agreed fairly well with a 

crystal field splitting calculated for the first excited 

level above ground in the lowest state of the basic term, 

2f5/2-

Crystal Field Theory 

In 1929, Hans Bethe (1) laid the foundation for the 

calculation of atomic energy levels using the crystal field 

approximation, and a year later (115) he somewhat enlarged upon 

his first paper. All work subsequent to this has been con­

cerned with the application of Bethe's theory to a specific 
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type of experiment, or specific symmetries. 

Jordahl, et al. (116), and Penny and Schlapp (4l), (117) 

followed Bethe1 s work with calculations of the susceptibilities 

of Pr, Nd, Ni, Cu, Cr, and Co salts using the crystal field 

approximation. The magnetic data, however, was only good to 

about 10 per cent at best, so no definite conclusions could be 

drawn as to how far a quantitative calculation could be pushed. 

In 1935 Van Vleck (118) explained the low susceptibilities of 

iron group salts with qualitative arguments concerned with the 

energy levels of the salts as split by a cubic, or nearly cubic 

field. Kynch (119) followed this with calculations of the 

matrix elements of 4-f electrons in a cubic field. Spedding, 

in 1937, (120) calculated the crystal field splitting for the 

ground term of trivalent Er for a field of cubic symmetry, and 

in accordance with the earlier work of Penny and Schlapp (41), 

calculated the magnetic susceptibility of octahydrated erbium 

sulfate. Bethe and Spedding (36), in the same year, measured 

and calculated term intervals and splittings and cubic crystal 

field splitting for trivalent Tm in the octahydrated sulfate. 

From the magnitude of the spin-orbit coupling parameter, they 

came to the conclusion that R-S coupling was far from being 

followed for this salt. In 1938, Ellis and Hall (121) noted 

that from Ketelaar's (7) structure determination of the rare 

earth ethylsulfates, the crystal field splittings of some rare 

earth ethylsulfates could be determined in terms of the 
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spherical harmonics Yg and Y°. 

There was an absence of work during the years immediately 

prior to, and during the second world war, but work was resumed 

in 1948 by Kittel and Luttinger (122) who applied the crystal 

field approximation to microwave absorbtion experiments on 

salts having cubic, tetragonal, rhombic, and trigonal 

symmetries. A year later, DeBoer and Van Lieshout (123) 

carried out the same type of work. They applied their 

calculations to the splitting of the ground state of tri­

valent Gd in a cubic crystal field, and took intermediate 

coupling into account. The years 1951 through 1953 saw six 

papers come out by Stevens (9) and Elliot (10), Elliot and 

Stevens (11), (12), (124), and Scovil and Stevens (125)• In 

these papers, they developed the calculations for applying the 

crystal field approximation to the rare earth ethylsulfates in 

terms of the matrix elements of a crystal field for the 

ground and next higher J value -, This work was followed by 

that of Judd (126), (127), (128) who performed the same 

calculations for a crystal field of Ĉ v symmetry, which is 

found in the rare earth double nitrates. In 1952 Kleiner 

(129), and later Tanabe and Sugano (130) calculated, from 

first principles, the crystal field splitting parameter 

for potassium chrome alum, and came out with a result that 

was not only the wrong order of magnitude, but differed in 

sign from the experimentally determined parameter for the cubic 

salt. Their conclusions were that the interactions of the 
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chromium atom with the finite structure of the surrounding 

dipoles, which in the crystal field treatment are considered 

as point dipoles, were the cause of the discrepancy. Recently, 

however, Phillips (131) has shown that these three workers 

neglected the orthogonalization of the metal and ligand wave 

functions with respect to each other, and that the orthogonali-

zation procedure leads to a calculated crystal field parameter 

which is in agreement with experiment. 

In 1957, Lacroix (132) attempted to correlate theory 

and experiment in the splitting of the ground terms in triva­

lent Eu and Gd in cubic crystal fields. The paramagnetic 

resonances of these ions in a cubic lattice of CaF were 

measured. In the same year, Hellwege, et al. (133) used 

first order perturbation theory to calculate the Zeeman plus 

crystal field splittings of the ground term of EuE.S. Sayre, 

et al. (134) cleared up a few minor disagreements between their 

work in 1958 and Judd's previous calculations, and Afanas'eva 

(135) essentially repeated the calculations of Judd, Elliot, 

and Stevens for the rare earth ethylsulfates and double 

nitrates. In the same year, Low (136) measured the paramag­

netic resonance of trivalent Gd in the cubic crystal field of 

a CaF lattice. He essentially repeated the work of Lacroix 

(132), and somewhat more fully developed the theory of 

splitting of an S state in a cubic field using intermediate 

coupling. Subsequently Lacroix (137) suggested that the 
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ground configuration of the trivalent Gd ion was 4f ( 5S 6p )6P 
n 

rather than the conventional 4f , in order to account for the 

difficulty in correlating theory and experiment for this ion 

in a known cubic field. Statz and Koster (138) in 1959» 

developed the general theory of Zeeman splittings for crystal 

fields of all symmetries, and at the same time Jarrett (139) 

published the formalism for incorporating covalent bonding into 

the crystal field approximation. Simultaneously, White and 

Andelin (140) calculated the results of including a magnetic 

exchange interaction along with the crystal field potential in 

the Hamiltonian. Satten and Margolis (141) have recently 

published L*S and crystal field matrix elements for the f̂  

configuration in crystal fields of trigonal and octahedral 

symmetry, to be used in conjunction with Stevens' (9) tables. 

Paramagnetic Resonance 

The theoretical work relating paramagnetic resonance 

absorbtion to crystal field splittings in rare earth ethyl-

sulfates and chlorides was essentially carried out by Stevens 

(9), Elliot (10), Elliot and Stevens (11), (12), (123), (124), 

(142), (143), Scovil and Stevens (125), and Judd (126), (127), 

(128) in the years 1951 to 1957. The paramagnetic resonance 

effect, discovered by Zavoisky (144) in 1945, has been 

extensively used to determine ground state splittings of 

paramagnetic salts, and has been discussed by Cooke (101). In 

1950, Al'tshuler, et al. (145) published results of resonance 
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experiments of hydrated nitrates and sulfates Pr and Nd, 

Er Ce(C0̂ )̂ .5Ĥ 0, and 8m̂ 0̂ . The results were 

interpreted in terms of crystal field splittings of the 

ground state of the basic term in the trivalent ions. 

The paramagnetic resonance work in the Clarendon labora­

tory (107), (146), (147), (148) has been reviewed by Bleany 

and Stevens (149), Cooke (3), and Bowers and Owen (150) in the 

light of the calculations of Stevens, Elliot, and Judd. 

Hellwege, in 1953 (151) measured the hyperfine splittings of 

trivalent Pr using the paramagnetic resonance technique. In 

1957, Al'tshuler, et al. (152) carried out paramagnetic 

resonance absorbtion experiments on double nitrates and ethyl 

sulfates of trivalent Pr, Eu, Tb, Ho, and Tm, but used 

ultrasonic vibrations instead of an alternating magnetic field 

in their work. Huchinson, et al. (153) measured the para­

magnetic absorbtion of hydrated gadolinium chloride, a crystal 

with Ĉ h symmetry, and used the calculations made by Elliot 

and Stevens to interpret their results. Subsequently Huchinson 

and Wong (154), and Judd and Wong (155) used paramagnetic 

resonance to determine the splittings of the basic terms in 

all of the rare earth trichlorides, and Er and Ho magnesium 

nitrates. The trichlorides have Ĉ h symmetry, and so could 

be considered in the light of Stevens' and Elliot's theory for 

the ethylsulfates. The measurements on the magnesium nitrates 

were interpreted in terms of Judd1 s earlier work (127) on 
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matrix elements of a crystal field of ichosohedral symmetry. 

Ryter (156), in the same year, measured the paramagnetic 

resonance of Eu and Gd which were introduced as impurities in 

the cubic lattice of CaF, and found that he was able to account 

for the results with a cubic crystal field. The same work was 

carried out at practically the same time by Lacroix (132), 

(137), and Low (I36), but Lacroix, as mentioned in the last 

section, felt that he could not adequately describe his 

results with a 4f? configuration for Gd. 

Sanadze (157)> in 1957, measured the paramagnetic reso­

nance of Nd(NÔ )j.ôHgO, repeating the work that had been done 

earlier by Al'tshuler (145)• In 1958, Matsumura, et al. (158) 

measured the electron spin resonance of trivalent Eu in cubic 

CaF, and interpreted their results in terms of the calculations 

of Kittel (122) and DeBoer (123). Baker and Bleany (159), in 

the same year, obtained magnetic moments and nuclear spins of 

Pr̂ ", Tb̂ 9, and Hô '7 using paramagnetic resonance to measure 

hyperfine splitting. They could pick up no resonance in Tm, 

which indicated that the ground state was non-degenerate, and 

they stated that the overall splitting of the ground terms for 

Tm and Tb should be small relative to the other rare earths 

because of the magnitude of Stevens' a, p and f . 
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Quantum Mechanical Calculations 

of Configuration Energies 

There have been essentially two schools of thought with 

respect to the calculation of term intervals and term splitt­

ings in the rare earths. The first, following Hund's (6) 

original calculation, and the evidence presented by Van Vleck 

(5) that the rare earths closely followed the Russell-Saunders 

case as presented by Conden and Shortley (160), calculated 

term intervals using the Russell-Saunders (R-S) coupling 

scheme. The second, and most recent, has taken account of the 

fact that R-S coupling is not followed exactly by the rare 

earths, and an accurate calculation must include intermediate 

and spin-spin coupling. 

Gibbs, et al. (161), in 1929» published calculated term 

intervals and splittings for 4f electrons following Hund's (6) 

scheme. Three years later Snow and Rawlins (162) calculated, 

and measured term splittings for salts of Pr, Nd, Sm, and Eu 

using the R-S scheme, and found relatively good agreement. 

Hund (163) in 1936, extended his earlier treatment (6), and 

in the same year R. J. Lang (164) located terms for trivalent 

Ce. There were four papers published by Gobrecht (165), (166), 

(167), (168) in the years 1937-38, in which he discussed 

multiplet structure for rare earth ions in terms of the R-S 

coupling scheme. 

H. Lang did the same for trivalent Pr and Eu in 1938 (169). 
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Two years later, Spedding (170) also calculated the term 

intervals and splittings for trivalent Pr using the methods of 

Condon and Shortley. He found good agreement between his 

calculated values and his previous data (40) if he took inter­

mediate coupling into account. 

As with the other work, theoretical and experimental, on 

rare earth metals and compounds, the calculations prior to 

1940 have been reviewed by Yost, jet al. (52). 

Racah (171), (172), (173), (174), in the years 1942 to 

1949, published a series of four papers in which he replaced 

Condon and Shortley's diagonal sum method of calculating 
2 

matrix elements of e /r̂  by a more simplified calculation 

using matrix algebra and tensor operators. 

In 1950, Rao (175), (176), (177) calculated the term 

values for the 4f̂  configuration, and Ishizdu (178), in the 

same year, calculated the off-diagonal electrostatic matrix 

elements for the 4f3 configuration using Racah's methods to 

obtain his results. Two years later, Racah (179) extended 

his methods to the calculation of term values for the f3 

configuration, 

Satten (180) measured the absorbtion spectrum of 

NdtBrOgĵ .̂ HgO, and in addition to experimentally determining 

all of the crystal field splittings of the ground term ̂ 19/2» 

he calculated term energies for the f3 configuration using 

Slater's diagonal sum method. His results agreed with those 
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of Racah. He assumed R-S coupling for all terms calculated, 

and recalculated two terms having J = 1/2 taking into account 

intermediate coupling. In a later note (181) he discussed an 

error in his previous paper which has been found by Jjrfrgensen 

(182). Satten has also discussed the Lande interval rule for 

the f̂  configuration (183). Reilly (184), also in 1953, 

calculated the electrostatic matrix elements of the f? 

configuration, and correlated Slater's and Racah's methods 

for computing term intervals. 

Jtfrgensen (185) in 1955, published a note in which he 

attributed the opacity of solutions of trivalent Tm in HCIO4 

to f-d transitions, and noted that Spedding's previous 

identification (170) of the position of the ̂ 1 term might be 

in error. Judd, in the same year, (186) calculated term 

splittings which agreed with spectroscopic data (58), (169) 

for trivalent Eu. He assumed in his calculation that there 

was no breakdown of R-S coupling. The same type of calculation 

was made by Judd in 1956 for trivalent Sm, Dy, Eu, Tb, and Ho 

(187), but this time he considered deviations from R-S coupling 

which were caused by spin-spin interactions. His calculations 

satisfactorily explained the deviations of the above ions from 

the Lande interval rule. 

In 1957 Elliot, Judd, and Bunciman (188) used the tensor-

operator and group theoretical methods of Racah to examine the 

coulomb interaction, L*S coupling, and crystal field potential 
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terms in the Hamilton!an. Their paper, coupled with the 

earlier work of Stevens (9), Elliot (10), Elliot and Stevens 

(11), (12), (124), (142), (143), Scovil and Stevens (125), 

Judd (126, (127), (128), and Racah (171 to 174), forms the most 

comprehensive statement to date of the formalism and calcula­

tions involved in a complete solution of the problem of a rare 

earth ion in a crystalline solid. They do not include 

magnetic exchange type of interactions, however, but the 

treatment of the problem when one adds magnetic exchange, and 

over-lap of ligand and metal ion orbitals has been set up by 

Jarrett (139) and White and Andelin (140). 

Rao (189) recalculated term splittings in 1958 for the 

4fl and 4f̂  configurations, and in 1959 Gruber and Conway (190) 

calculated term intervals and splittings for trivalent Tm 

taking into account intermediate coupling. In 1959, Judd and 

Louden (191) calculated spin-orbit matrix elements for the f3 

configuration using R-S coupling only, and correlated their 

results with the earlier experimental work of Dieke and 

Heroux (63) and Spedding (40). Wybourne (192), in the same 

year, recalculated term splittings for trivalent Pr and Tm, in 

agreement with the earlier work of Bethe and Spedding (36), 

(40). Also in 1959, Runciman (193) published tables classify­

ing the terms in the f? configuration. Wybourne has recently 

calculated terms for trivalent Nd and Er (194). He diagonal!zed 

the complete spin orbit matrices for the f3 and f̂  
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configurations to obtain term energies. The most recent 

publication to appear has been a calculation by Gruber and 

Conway (195) of the crystal field splittings of the ground and 

higher terms of nine hydrated thulium ethylsulfate. Inter­

mediate coupling was taken account of, and the agreement 

between the calculated and observed splittings of the ground 

term was much better than that calculated using crystal field 

constants extrapolated from the work of Elliot and Stevens 

(11). This point will be treated at the end of this work in 

the discussion section. The agreement between calculated and 

observed splittings of excited states, however, left a great 

deal to be desired. 

Summary of Literature Review 

A brief glance through the above review might lead one to 

suspect that the crystal field approximation has been 

extensively tested and not found lacking, so further experi­

mental work could be considered as frosting on the cake. 

To the extent that this review has not been a critical one, 

the criticism is justified. If one intercompares, however, 

the "good11 agreement between experiment and theory obtained by 

various workers on a given compound, ca. the hexa hydrated 

chlorides of the rare earths which are now known to belong to 

the symmetry group Ĉ , one sees that the early workers 

obtained "good" agreement using a crystal field of cubic 

symmetry, whereas the later ones explained their results using 
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a trigonal field. Clearly the criterion of "good" agreement 

was different in the two cases. An examination of the results 

of spectral measurements also reveals that where the splitting 

of the ground state has been correlated with crystal field 

calculations, the crystal field splittings of higher states 

are frequently in complete disagreement with the calculated 

values, or agree so poorly that there is a definite indication 

of error somewhere. It might also be mentioned that where 

various authors have claimed agreement between calculated and 

experimental term intervals, the possibility exists that the 

states have been incorrectly identified. This is particularly 

true where states are moved as much as 10,000 cm™"'" when inter­

mediate coupling is included, and the identification of the 

states was made using R-S coupling. 

While it is true that the workers at the Clarendon 

Laboratory have been successful in quantitatively correlating 

paramagnetic resonance and heat capacity data with splittings 

of the lowest level of the ground state for the even numbered 

rare earths, they have only evaluated four pieces of informa­

tion using four parameters. It would seem that a more 

extensive quantitative test might be desired, namely, a fitting 

of at least all of the splittings of the ground state with 

these four parameters. This is not to underestimate the 

importance of the calculations of Elliot, Stevens, and Judd, 

but only to point out that their results have not been 
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extended as far as they might he. 

One does have the feeling, however, that transitions 

within the 4f configuration are largely responsible for the 

optical, thermal and magnetic properties of the rare earth 

salts. Also, because of the excellent "partial" fitting 

between experiment and theory, it would seem that the 

theoretical calculations might be extended to obtain all of 

the splittings of the ground plus some higher states for even 

and odd numbered rare earth salts. By no stretch of the 

imagination has this yet been accomplished theoretically, and 

the present experimental data are not yet extensive enough to 

allow even all ground state splittings to be identified for a 

homologous series of rare earth salts. 
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MATERIALS AND APPARATUS 

Materials 

The TmCEtSÔ Jg.̂ HgO and LuXEtSOî .ÇÎ O were prepared 

from 99»9+ per cent pure oxides of Tm and Lu obtained at the 

Ames Laboratory. The procedure for separation and purification 

of the rare earths has been discussed by Spedding (196). The 

procedure for preparation of the salt was as follows: The 

oxide was dissolved in concentrated HC1 at 85°C and allowed to 

boil down to a thick syrup. The solution was then cooled and 

about 80 per cent of the remaining water aspirated off at room 

temperature. The cooling was done to prevent the formation of 

the insoluble oxychloride which forms at temperatures of the 

order of 90°C in the presence of air. The almost dry hydrated 

chloride was then dissolved in absolute ethanol, and mixed 

with an absolute alcoholic solution of sodium ethylsulfate, an 

excess of 10 per cent more than the stoichiometric amount of 

NaEtSÔ  needed to combine with the Tm being used. It was 

found that the solubility of TnKEtSOî ĤgO in CĤ CHgOH was 

172 g/1, so 5*82 ml of absolute ethanol was used in the 

combined solutions for each g of Tm(Et SOi*. )̂ .9HgO to be 

prepared. When the alcoholic solutions of the rare earth 

chloride and sodium ethylsulfate were combined, the majority 

of the NaCl in the solution was precipitated. The solution 

plus NaCl precipitate was allowed to stand at room temperature 

for 24 hours, and the NaCl precipitate then removed by 
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filtration. Ninety per cent of the alcohol was then removed 

from the solution at room temperature by aspirating the solu­

tion in a filtering flask which was immersed in a constant 

temperature water bath and attached to a rocking mechanism to 

prevent supersaturation at the surface of the solution. 

Enough water to dissolve the ethylsulfate was then added to 

the alcoholic solution, and the solution aspirated at room 

temperature, with rocking, down to a thick mush of fine 

crystals. The crystals were filtered, dissolved, and one 

recrystallization from H20 carried out. The resulting crystals 

were analyzed (197) by titration with E.D.T.A. in the presence 

of 2-(1,8-dihydroxy-3,6-disulfo-2-naphtylazo)-benzene sulfonic 

acid and found to contain 99*9 per cent the theoretical amount 

of rare earth. These crystals were used for the heat capacity 

measurements. 

To obtain the single crystals used for the magnetic 

susceptibility measurements, some seed crystals about Jam x 

5mm x ?mm were taken from the crystals to be used in the heat 

capacity measurements, and glued to a plexiglass paddle with 

plexiglass cement. The paddle was wired to a glass rod with 

gold wire, and the rod connected to an electric motor which 

rotated it at about 15 rpm and reversed direction every 10 

seconds. The end of the rod to which the crystal was 

attached was immersed in 150 cc of saturated solution in a 

beaker which was placed in a dessicator. Dessicant was 
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placed about the beaker to remove the water from the solution, 

and it had to be replaced every 36 hours. The crystal growing 

apparatus is shown in Figure 1. In retrospect it appears that 

it might have been simpler and less expensive to simply expose 

the beaker to the atmosphere of the laboratory, and make some 

arrangement to keep dust out of the solution while stirring. 

The crystals grown for the susceptibility measurements 

were about 3 cm long by 2 cm wide by 1-1/2 cm thick. Under 

carefully controlled conditions, a crystal this size could be 

grown in 2 weeks. By "carefully controlled conditions" is 

meant primarily not allowing the solution to become unsaturated 

when adding water to dissolve small seed crystals that formed 

during the evaporation process. This prevention was accom­

plished by removing the rod plus crystal from the saturated 

solution, adding water to the solution, and stirring for 10 

minutes. If all the small crystals in the solution were not 

dissolved, it was safe to replace the crystal in the solution 

and continue its growth. 

Apparatus 

Heat capacity measurements 

The type of low temperature calorimeter and circuits 

used for heat capacity measurements from 12 to 300°K has 

previously been described (198), so no overall description 

will be given of them here. The wiring of the thermocouples, 

and the calorimeter can are different than in the calorimeter 
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Figure 1. Apparatus for growing single crystals from aqueous solution 
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referred to above, however, so a short account will be given of 

them; The absolute and difference thermocouples were copper-

constantan, and were arranged as shown schematically in Figure 

2. There were 6 difference thermocouples to measure the 

temperature difference between the 3 components of the sample 

can and adiabatic shield, the side bottom and top, and between 

the side and bottom of the shield, the side and top of the 

shield, and the bottom of the shield and the floating ring. 

Absolute thermocouples were soldered to the side of the shield 

and to the lower refrigerant tank. The wires used were No. 32 

B. & S. silk insulated copper and No. 3k silk insulated 

advance constantan. As shown in Figure 2, one copper wire, 

number 2, served for the can side of the side, bottom and top 

difference thermocouples. 

It was decided to use the one, rather than 3 copper wires 

for this purpose in order to reduce the thermal conductivity 

of the bundle of leads between the gold plated sample can and 

adiabatic shield. That this procedure would lead to no 

undesirable thermal emfs was shown by a measurement of the 

thermal emf between gold plated copper and copper which was 

found to be 3*4 microvolts/220*. 

Similarly, one copper wire, number 1, served for the 

shield side-bottom and shield side-top difference thermo­

couples, and one constantan wire, number 5, served for both 

absolute thermocouples. In the ring shield difference thermo-
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couple designated by wires 8 and 9, one junction was soldered 

to the side of the shield at its bottom edge, and one junction 

was tied in among the leads about one inch from the floating 

ring, between the shield and floating ring. It is felt that 

this positioning of the thermocouple, and method of attaching 

both junctions to their respective stations was responsible 

for reducing the cold temperature drifts of the sample from 

.001* per minute to less than 10"̂ ° per minute above 200°K. 

The difference thermocouple wiring arrangement allowed 

one to check the difference in temperature between the side, 

bottom and top of the can, a measurement which could not be 

made with the wiring arrangement previously described. 

It should be mentioned that another factor in keeping the 

drifts low was the method of wrapping heating wire on the 

components of the adiabatic shield. Since the edges of the 

side, bottom, and top of the shield could not be wrapped, the 

heater wire near the edges was overwound in an amount suffi­

cient to take into account the area not covered with wire and 

insure more uniform heating of the shield components. 

The sample can was constructed to fulfill the following 

3 purposes: (1) to allow hydrated salt to be sealed in the 

can without decomposing or dehydrating it, (2) to provide 

uniform heating and rapid temperature distribution between the 

sample and the can during a heating period, and (3) to provide 

rapid temperature equilibrium throughout the sample 
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immediately proceeding the heating period. To accomplish (1), 

the cover of the sample can was constructed as shown in Figure 

3. The larger cover was soldered to the can while empty. The 

salt was then inserted into the can through the hole in the 

outer cover, the can placed in an ice bath with particular 

attention being given to the cooling of the junction between 

the outer cover and side of the can. The inner cover was then 

soldered on. It was thus possible to solder the can shut and 

yet not decompose the sample. A silver capillary tube was 

provided on the cover to pump out air and introduce helium 

used for a thermal exchange medium. Ordinarily 2 cm pressure 

of He was introduced into the can at 300°K, and sealed in the 

can by pinching off and fusing the silver port. 

A small container for solder was also provided on the 

cover. This container allowed one to add or remove solder 

from a non-vital joint after soldering operations were com­

pleted, thus keeping the weight of the solder on the can 

constant. 

To accomplish (2) and (3), the sample heater, which was 

silk insulated No. 40 B. and S. constantan, was wound on a 

0.010 inch thick cylindrical copper shell placed in the can 

and provided with six 0.010 inch copper radial fins. The 

shell was not in good thermal contact with the can, but vas in 

good thermal contact with the powdered sample which was packed 

around it. The can was thus heated through the sample so that 
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no part of the can became hotter than the sample. This 

arrangement made manual control of the adiabatic shield quite 

easy since all temperature differences were a slowly changing 

function of time. The heater leads were brought into the can 

through a Stupakoff seal in its bottom. 

A check of values of heat capacities obtained in the 

calorimeter used for the salt measurements was made by running 

the heat capacity of a 99*9 per cent pure sample of benzoic 

acid supplied by the National Bureau of Standards. It was 

found that the curve obtained from the benzoic acid measure­

ments in the calorimeter used for the ethylsulfates agreed 

with the N.B.S. data to within 0.1 per cent from 15 to 300°K, 

except for the region from 60-90°K where the N.B.S. data are 

known to deviate from a smooth curve by as much as 0.2 per 

cent. 

Magnetic susceptibility measurements 

The magnetic susceptibility apparatus consisted of 2 main 

groups of equipment; a mutual inductance bridge and related 

equipment, and a cryostat and related equipment. The bridge 

group will be discussed first. 

The Hartshorn (199) type mutual inductance bridge used in 

this work was designed and constructed by L. D. Jennings* and 

has been_described by V. H. Hesterman (200), so no detailed 

account will be given of it here. A discussion will be given, 

P̂resent address, Watertown Arsenal, Watertown, Mass. 
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however, under "Experimental Procedure" of the circuit 

equations involved in the balancing of the bridge. L. D. 

Jennings has recently discussed the principles of design of 

inductance bridges in general (201), and the reader is 

referred to his work for a thorough understanding of the 

important considerations involved. It suffices to say that 

the smallest unit of inductance on the bridge was approximately 

2x10"̂  henrys. The circuit for measuring susceptibilities is 

shown in Figure 4. The "primary" half of the circuit con­

sisted of a Hewlett Packard Model 202C oscillator in series 

with a power amplifier constructed in this laboratory. The 

power amplifier was in series with the bridge primary, an 

external variable primary, and the sample primary. The 

"secondary" half of the circuit consisted of the bridge 

secondary in series with the external variable secondary, 

the sample secondary, and a 1:200 gain transformer. The 

transformer, Model No. KI 1117, was supplied by South Western 

Industrial Electronics Co. of Houston, Texas. The output of 

the transformer was fed into a 33 cycle high gain selective 

amplifier described by Jennings (201), and from thence into 

the Y terminals of an oscilloscope» The amplifier was 

designed and built in this laboratory. The X sweep of the 

oscilloscope was externally synchronized with the oscillator 

signal, thus allowing one to identify an inductive and 

resistive component in the amplifier signal. This 
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Figure l+e Mutual inductance circuit for measuring magnetic susceptibilities 
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identification will be further discussed. A common side of 

the primary and secondary, and the case of the transformer 

were grounded. The bridge and the sample coils were wound as 

astatic pairs with grounded shields between primary and 

secondaries to minimize external inductive, and internal 

capacitive pickup. The external variable described by 

Hesterman (200) was wound as an astatic pair, but no capac­

itive pickup shields were used. To minimize external inductive 

pickup, all leads were coax cable or twisted pairs, where it 

was not feasible to use coax. The entire circuit was essen­

tially used as a null point instrument, in that the bridge was 

used to oppose the signal from the sample coils due to the 

presence of the sample. The external variable was used to 

place the signal from the sample coils within the limits of 

the variable inductance available from the bridge• In prin­

ciple the sample coils were wound as an astatic pair such that 

the net mutual inductance was zero with the sample absent. In 

practice the windings were never perfect, and the net signal 

from the sample coils was compensated for with the external 

variable. 

There were two different sample coils used in the 

susceptibility measurements. One was used for the measurement 

of the perpendicular susceptibility, and the other for the 

measurement of the parallel susceptibility. Since the con­

struction of the two was quite similar, only the coil used for 
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the perpendicular measurements will be described. An exploded 

view of the coil, along with the nomenclature and dimensions 

of the components is given in Figure 5* The number of turns 

used in the primary and secondary was a result of the formulae 

given under "Treatment of Data". The dimensions of the coil 

were arranged to yield a net mutual inductance of zero in the 

absence of a sample, and were calculated according to pub­

lished tables of mutual inductance versus coil configuration 

(202). The 0.001 inch copper foil shown in Figure 5 was 

grounded and served as a shield to prevent capacitive coupling 

between the primary and secondary. Slits were made in it, 

similar to those in the core of a commercial transformer, to 

reduce eddy currents. The two outer windings of the secondary 

were wound counter to the center winding to give a net mutual 

inductance of zero. 

The cryostat and related equipment consisted of the 

cryostat proper, and the following systems: (1) a system for 

mounting the sample and moving it in and out of the sample 

coils, (2) a vacuum system to thermally isolate the sample 

from the bath, (3) a manometer system used to measure 

temperatures below 4.2°K, (4-) a thermocouple-potentiometer 

circuit to measure temperatures above *+.2°K, (5) a heater 

circuit to heat the sample, and (6) a pumping system to lower 

the temperature of the liquid He bath. System 1, above, and 

part of the cryostat proper are shown in Figure 6. The 
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Figure 5. Exploded view of sample coils used for perpendicular susceptibility 
measurements 
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Figure 6. Sample support and dewar system for measuring 
magnetic susceptibilities 
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cryostat proper consisted of two concentric dewar supports, 

helium and nitrogen dewar s, a sample coil mounting, and 

pumping lines for systems 2 and 6. The pumping lines were 

copper pipe which served as two of the three legs of the dewar 

supports. The entire unit was mounted on a 3A- inch plywood 

base to which casters were attached, and was thus mobile. 

Both dewars were constructed of pyrex tubing and strip 

silvered in this laboratory by W. Jones of the glassblowing 

shop. The inner dewar was 33 inches long and had a 1-3A 

inch i.d, and a 2-1/2 inch o.d. The outer dewar was 34- inches 

long and had a 4- inch i.d. and a 4—3/4- inch o.d. The vacuum 

chamber of the inner dewar, instead of being pumped out and 

sealed off, was provided with an 8mm port shown at the top of 

the dewar in Figure 6. Before each series of measurements, 

the vacuum chamber was pumped down, through this port, to 

about 25 microns pressure. When liquid He was introduced 

into the dewar, the resulting temperature drop would lower the 

pressure in the vacuum chamber to well below the thermal con­

ducting region. This procedure was used because He diffuses 

through pyrex, and a permanently sealed system would have had 

to have been broken, re-evacuated, and re-sealed about every 

third run. In a typical series of measurements, 5 liters of 

liquid He were required to fill the He dewar and cool the 

sample from ?8 to 4-.2°K. The sample coil mounting was a 25 mm 

o.d. pyrex tube which made a vacuum seal to the He dewar 
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support unit through a one inch Cenco vacuum coupling, as 

shown in Figure 6. The He dewar, in turn, made a vacuum seal 

to its support by being spring loaded against a natural rubber 

gasket. 

System 1 consisted of a sample holder about which was 

wrapped the sample heater and thermocouple, and a sample 

support consisting of three 3 mm glass rods connected to 

three 1/8 inch steel rods. The lower end of the glass rods 

were hooked, and the top of the cylindrical sample container 

was attached to them, at 120° intervals, with cotton thread. 

The upper half of the unit was housed in a 21 mm o.d. pyrex 

tube, and suitable 0 ring vacuum couplings permitted it to be 

translated with respect to the sample coils. The inside of 

the sample coil supporting tube will hereafter be referred to 

as "the sample system". The glass rods were connected to the 

steel rods by means of small brass cylinders into which both 

fit snugly. A set screw served to keep the steel rods in the 

cylinders, and the glass rods were glued in place with Duco 

cement. The steel rods were brought from the sample system 

to the outside through a piece of lA inch natural rubber 

which served as a vacuum seal. The steel rods could be 

translated with respect to each other, thus allowing rota­

tional orientation of the sample in the coils. The upper 

ends of two of the steel rods were threaded and fitted with 

10-32 nuts to provide fine adjustment of their translational 
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motion. 

The sample holder was a right circular plexiglass cylinder 

1 inch long x 0.390 inch in diameter. It was divided into 2 

halves, each having a 5/16 inch diameter hemisphere milled in 

it to accommodate half the sample. The 2 halves were glued 

together with plexiglass cement. A small plexiglass ring, in 

which there were 3 holes 120° apart, was fitted to the top of 

the sample holder. It was through these holes that the 

supporting glass rods were threaded to the sample container. 

The thermocouple, an alloy of Au 2 per cent Co coupled to 

Au 0.37 per cent Ag, was number 36 enamel covered wire, and 

wrapped around both halves of the sample container. It was 

led into the sample cavity through a small hole in the bottom 

of the sample. The thermocouple wire was supplied by Sigmund 

Cohn and Corp. of Mt. Vernon, New York. The temperature-e.m.f. 

curve from 4-250°K of a sample of this thermocouple wire was 

measured by J. Schirber of this laboratory. The shape of this 

curve was assumed to be the same for all such wire taken from 

the same spools, and thus Schirber's data allowed one to 

obtain a temperature-e.m.f. relationship if one calibration 

point were available. At first thought, one might think 

that the Co in the thermocouple would contribute significantly 

to the magnetic moment of the sample container, but a calcula­

tion showed that the amount present was negligible compared to 

the sample. It was found, however, that some sections of the 
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wire contributed an unreasonable amount to the inductive 

signal due to the sample plus container. This contribution 

must have been caused by a ferromagnetic precipitate of cobalt 

in the allow. No such wire was used in any of the measure­

ments tabulated in this work. 

The sample heater was an alloy of non-insulated number kO 

Cu-Be wire, and had a resistance of 7 ohms/foot. This 

composition was used because it was found to be nonparamag-

netic at liquid helium temperatures. The heater was non-

inductively wrapped over the thermocouple, with a layer of 

cigarette paper between the two for electrical insulation. 

Since the heater was not insulated, it was not doubled and 

wrapped around the sample container as is ordinarily done in 

noninductive winding. Instead, a layer of number 32 formvar 

covered copper was wrapped around the container, the Cu-Be was 

wrapped, turn for turn, beside it, and the pair constituted a 

noninductive winding. Silver solder was used for all electri­

cal connections which were in the sample coils, because lead-

tin solder exhibits a superconducting transition, with 

associated permeability change, at He temperatures. The 

heater leads were number 36 formvar covered copper, and were 

soldered to the number 32 Cu and number 4-O Cu-Be near the top 

of the sample holder. The heater and thermocouple leads were 

led from the sample system through a tee which made a vacuum 

coupling with the 21 mm pyrex tube. Between the sample 
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container and the tee, the leads were wrapped around a 12 inch 

long x 3/8 inch in diameter styrofoam rod, in order to in­

crease the thermal path between the sample holder and room 

temperature. A vacuum seal to the outside was made by 

separating the leads and clamping them in a piece of lA inch 

vacuum tubing connected to the center arm of the tee. A bit 

of vacuum grease was smeared inside the clamped portion of the 

tubing to insure a good vacuum seal. 

System 2, the pumping group for the sample chamber, 

consisted of a Consolidated Electrodynamics Corp. VMF 11 air 

cooled diffusion pump and a Duoseal forepump, Model 14-00 B. 

The diffusion pump with its blower was mounted on the 

nitrogen dewar support, and was connected to the sample system 

with a flexible bellows. The top view of the cryostat and 

associated parts of system 2 are shown in Figure ?• A 1/2 

inch valve, labeled A in Figure 7, was provided between the 

forepump and diffusion pump. On the diffusion pump side of 

A, a 1/8 inch toggle valve, B, was provided as a vent and an 

inlet for He exchange gas. On the forepump side of A, an 1/8 

inch vacuum toggle valve, C, was provided to allow pumping on 

the vacuum chamber of the inner dewar. 

The manometer system, 3» was a standard mercury manometer 

in parallel with an oil manometer. The two had a common low 

vacuum side to the bath in the inner dewar. Each was provided 

with a glass scale marked in mm units. The oil manometer was 
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Figure 7. Top view of cryostat and associated parts of 
magnetic susceptibility apparatus 
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provided with a valve "between its two arms, so it could be 

used as a differential manometer. Pressures over the He bath 

were read on the Hg manometer from 760 to 50 mm. The oil 

manometer was used below 50 mm Hg. The oil to Hg density ratio 

was found to be 1/13.00. A safety system was provided in the 

011 manometer to prevent pressures higher than 6 cm Hg from 

being introduced, thus preventing the random external lubrica­

tion of all equipment within a 6 foot radius of the manometer. 

Eighth inch copper tubing was used to connect the manometer 

with the manometer port on the cryostat, and provision was 

made to introduce He gas into this line in order to bring the 

pressure in the inner dewar up to that of the laboratory. 

A Rubicon Type B potentiometer, catalog number 2780, was 

used to measure the e.m.f. of the thermocouple. The galvano­

meter was a Leeds and Northrup catalog number 24-3OA, and had a 

sensitivity of 4.7 microvolts per cm. 

The sample heater circuit system, 5> consisted of 30 ohms 

of the Cu-Be wire described above, 2 variable resistors, and a 

12 volt source of current. The heater was in series with a 

200 ohm, 1/2 watt helipot variable resistor, and the center 

and an end tap of a 1200 ohm, 1/2 watt helipot variable 

resistor. The 2 end taps of the 1200 ohm variable were 

connected to two 6 volt Willard cells in series. By varying 

the position of the center tap of the 1200 ohm resistor, one 

could continuously vary the voltage across the heater from 
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zero to 12 volts. The 200 ohm variable provided a fine control 

of the heater current. An on-off switch was provided to open 

and close the battery circuit. 

The pump used to reduce the pressure over the bath in the 

inner dewar was a Kinney DVM 12814-, and was connected to the 

cryostat with 4-0 feet of 2 inch copper pipe. At the site of 

the cryostat, a 2 inch vacuum valve in parallel with a 1/8 

inch needle valve was provided in the 2 inch line from the 

pump. The needle valve permitted relatively fine adjustment 

of the pumping speed down to a pressure of about 70 mm Hg, and 

the 2 inch valve was used for lower pressures. This arrange­

ment permitted control of the bath temperature, in the case of 

liquid He, to + 0.005° and was satisfactory for the measure­

ments in this work. For work where the susceptibility might 

be a rapidly varying function of temperature below 4-°K, 

however, some type of manostat which would permit finer 

control would have to be used. C. A. Swenson of the Ames 

Laboratory has recently assembled an instrument which permits 

control of He bath temperatures to + 0.0005° in the range of 

1.2-4°K, and the reader is referred to him for further details. 

With the pump and pumping line described above, a temperature 

of 1.3°K could be attained. 

A pop-off valve, shown in Figure 7> was provided as a 

safety pressure release between the inner dewar and the valves 

in the pumping line. After finishing pumping on the bath, one 
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could close the valves to the pump and allow the system to come 

to atmospheric pressure without fear of the system warming and 

blowing apart, since any excess pressure would be relieved 

through the pop-off. 
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EXPERIMENTAL PROCEDURE AND TREATMENT OF DATA 

Experimental Procedure 

Heat capacity measurements 

The procedure for making heat capacity measurements in 

this laboratory has been described by Skochdopole (203), and 

with the exception of a few differences will not be reiter­

ated in detail. In principle one has a sample in a suitable 

container, called the calorimeter can, surrounded by a shield 

which he endeavors to keep at the same temperature as the can, 

thus "adiabatically" isolating the sample. The shield is 

referred to as the adiabatlc shield. A measured amount of 

electrical energy is introduced into the sample, and the 

resulting temperature rise of the system is measured. A 

calibrated, platinum resistor is ordinarily used as a thermom­

eter in the temperature range 12-350°K. The raw data for the 

heater and thermometer readings are voltage measurements 

across the resistor in question, and across a known resistance 

in series with it. The desired currents and resistances are 

then obtained using Ohm's law. The voltage measurements in 

this laboratory are made with a White double potentiometer to 

an absolute accuracy of one microvolt. Temperatures are 

measured to an accuracy of 0.01°K, and temperature differences 

may be measured to 0.001*. 

The differences between the method of collecting data in 
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Skochdopole1 s work and the present research were the following: 

(1) during the rating periods, i.e., the periods during which 

temperature drifts were being determined, the voltage across 

the standard resistor in series with the thermometer was 

adjusted to read 9999 on the White potentiometer dials. This 

voltage was obtained by adjusting the resistance in a 10 K 

decade resistor box in series with the thermometer. The 

purpose of this procedure was to facilitate calculation of 

temperatures; (2) in each of the series of heat capacity 

measurements made on the sample, in a region where no 

anomalies are known to be present, a few points were taken to 

check AQ/AT of the sample plus can as a function of AT, and of 

heater current. The method of making these checks was to 

reduce the time of a heating period by a factor of 4, having 

previously taken at least 4 points with the length of the 

heating periods long enough so that 1/4 the time of one of them 

would not be less than 300 seconds. This would reduce the AT 

by a factor of 4. After 2 points had been taken at 1/4 the 

time of the previous heating period, 2 points were taken with 

the heating current reduced by a factor of 2 and the time of 

the heating period increased by a factor of 4. Thus the AT 

was kept the same as in the previous 2 points. The reason for 

making these checks was to determine whether or not the 

calorimeter was functioning correctly. For instance, it might 

be possible that when the sample heater current exceeds a 
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certain value, parts of the sample container become superheated 

enough to conduct some of the energy supposedly being supplied 

to the sample back through the heater leads into the adiabatic 

shield. In this case one would expect AQ/AT of the sample plus 

sample container to increase with increasing current. In one 

case, when running the heat capacity of Lu ( E t SO4. ) 3.9H2O, it 

was actually found that AQ/AT was a function of AT. When the 

circuits were checked, it was found that the thermometer leads 

might have had a high resistance "short" among them. 

Separating and re-insulating the leads removed the effect. 

Magnetic susceptibility measurements 

Prior to measuring the susceptibility of single crystals 

of TmE.S., the crystals were machined into 5/16 inch diameter 

spheres, and oriented in the sample container such that the c 

axis would be parallel, or perpendicular to the rotational 

axis of the sample coils. • 

The machining was done with a precision metal lathe. 

Essentially, a plexiglass mandril was placed in the chuck of 

the lathe, and a crystal glued to the end of it with plexiglass 

cement. Half the crystal was machined by taking longitudinal 

and transverse cuts about 0.002 inch deep such that the envel­

ope of the cuts on the surface of the crystal was a hemisphere. 

The crystal and mandril were then removed from the lathe, and 

a new mandril having a 5/16 inch diameter hemisphere milled in 

its end was placed in the lathe. The crystal was removed from 
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first mandril, and the hemispherical section glued into the 

matching cavity in the second mandril. The second half of the 

crystal was then machined into a hemisphere. The spherical 

crystal was covered with a thin film of collodian for protec­

tion against surface decomposition. Five such crystals, 

labeled crystals numbers 1, 2, 3, 4 and 5 were prepared, and 

their weights were 0.5107 g, 0.4748 g, 0.5179 g, 0.4601 g, and 

0 .5432 g, respectively. 

An approximate determination of the orientation of the c 

axis of each of the hexagonal crystals was made with the use of 

a polarizing microscope. In most cases, the determination was 

good to 5° at best. A small line was scribed on the surface 

of the crystals to indicate the plane perpendicular to the c 

axis. 

The crystals used for each series of measurements were 

placed, with the desired orientation, in the cylindrical 

plexiglass sample container, and the two halves of the sample 

container were glued together with plexiglass cement. The 

sample with its support system was then placed in the 25 mm 

pyrex sample coil support, and the sample system and the dewar 

were cooled to 78°K with the liquid nitrogen in the outer 

dewar. Liquid helium was then transferred into the inner dewar 

and the system was ready for susceptibility measurements. For 

the parallel susceptibility measurements, the rotational 

orientation of the crystal was adjusted with the sample support 
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rods such that a minimum inductance reading was obtained. It 

was assumed that the minimum corresponded to the field of the 

primary coils being parallel to the crystal c axis. Since a 

relatively small orientational adjustment was required when 

the crystal was first aligned using a polarizing microscope, 

there was no reason to believe that the extremum in the 

inductive signal did not correspond to the field being 

parallel or perpendicular to the crystalline c axis. 

The process of making susceptibility measurements 

essentially consisted of measuring the mutual inductance of 

the sample coils with the sample in, and with the sample out 

of the coils. This procedure was carried out with the sample 

at a known temperature as determined by vapor pressure or 

thermocouple e.m.f. data. The measurements may be categorized 

into two parts; below, and above 4.2°K. Each will be discussed 

separately. 

Below 4.2°K, the vapor pressure over the liquid He bath 

was used as a thermometer. Ordinarily a vapor pressure bulb 

immersed in the liquid He bath is used for accurate temperature 

determination, but the bath vapor pressure is sufficient when 

only 0.01° accuracy is desired. The parallel and perpendicular 

susceptibilities of TmE.S. are slowly enough varying functions 

of temperature below 4°K that 0.01° accuracy was sufficient. 

The sample was cooled to 4-.2°K with liquid He in the inner 

dewar, and 25 microns pressure of He exchange gas in the sample 
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system. An "in" reading, with the sample in the coils, was 

taken of the "bridge inductance and resistive components, and 

the vapor pressure over the bath. The sample was then raised 

out of the coils far enough so that a one inch translation up 

or down did not affect the signal from the bridge circuit. An 

"out" reading was then taken of inductance, and resistance. 

The pressure over the bath was the same for the "in" and "out" 

reading. The pressure was then reduced over the He bath by 

opening the valve connecting the bath to its pumping line, and 

"in" and "out" readings were taken at 0.2° intervals from 4.2 

to 1.3°K. A steady state pressure was attained for each point. 

Because the temperature of the bath, and thus the configura­

tion of the sample coils, was changing, the "out" readings 

below 4.2°K were a function of temperature. Usually one "out" 

reading was taken for every four "in" readings, and the inter­

mediate "out" readings were obtained by interpolation. This 

procedure was used because taking an "out" reading would warm 

the upper components of the sample system. A few tenths of a 

liter of He was then evaporated every time the sample was 

replaced back into the coils for the next "in" reading. Since 

only three liters of He were available in the dewars, a finite 

number of "out" readings could be taken before the level of the 

He dropped below the top of the sample coils. 

When the lowest attainable temperature was reached, the 

He exchange gas was pumped from the sample system. At this 
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point, the temperature of the sample would start to rise. The 

temperature gradients along the thermocouple wire would then 

change rapidly, giving rise to varying thermal e.m.f.'s, until 

the pressure in the sample system was below 0.2 microns. The 

thermocouple was thus useless as a thermometer for a short 

time while the sample was warming. By the time the pressure 

was low enough to permit the use of the thermocouple as a 

thermometer, the sample had usually warmed to greater than 4°K. 

He vapor pressure was thus the only thermometer below 4°K. 

In order to obtain a calibration point for the thermo­

couple, the inductance versus temperature curve was plotted 

from 1.3 to *f.2°K, and the first few inductance points taken 

using the thermocouple as a thermometer were placed on a 

smooth extrapolation of this curve. Thus e.m.f. versus 

temperature points were obtained for the thermocouple. The 

process of using these calibration points to obtain a tempera-

ture-e.m.f. curve for the thermocouple will be discussed under 

"Treatment of Data, Magnetic susceptibility measurements". 

As the sample warmed, thermocouple and bridge readings 

were taken, usually by two operators, at one degree intervals 

to 20°Kj two degree intervals to 40°K$ five degree intervals to 

100°K; and ten degree intervals to 210°K. The sample began to 

lose water under vacuum above 210°K, so readings were concluded 

at this temperature. The sample would warm at a reasonable 

rate, ca. 0.5° per minute, to about 20°K. Above this tempera­
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ture, the sample heater had to be used to warm the sample. It 

was found that too rapid a heating rate would cause the temper­

ature of the sample to lag behind that of the thermocouple, and 

would yield data with a large amount of scatter. The heating 

rate was thus adjusted so that when the heater was shut off, 

the time for the thermocouple reading and the bridge reading 

to reach constant values was less than 10 seconds. This 

procedure resulted in a minimum of scatter. No improvement 

in the scatter of the data could be made if, instead of a 

constant slow heating rate, points were taken with the heater 

adjusted to give zero heating rate. Both methods were used, 

however, in different runs, in order to check the consistency 

of the data thus obtained. 

The "out" readings were relatively constant for all points 

taken after the bath had been pumped to the lowest attainable 

temperature, because the coil configuration was not changing. 

Enough "out" readings were therefore initially taken to 

establish that they were indeed constant, and then an "out" 

reading was taken every 10 points, or so. 

A special set of measurements of the parallel suscepti­

bility, discussed under "RESULTS, Magnetic Susceptibility 

Measurements", were taken using liquid H2» N2, CĤ , and Ĉ Hg 

as coolant baths and vapor pressure thermometers. These 

measurements were taken because of an irreproducibility in the 

measurements below 20°K using the sample container wired with 
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a heater and thermocouple. The scatter was attributed to a 

closed circuit around the sample holder due to a short in the 

thermocouple or heater leads. An unwired sample container was 

constructed, and measurements were taken from 1.3-̂ » 13-20, 

63-78, 90-100, and 165-205°K using the above mentioned liquid 

gases as heat sinks and thermometers. In these measurements, 

an in and out reading was taken for every point. 

A short discussion of the equation of the circuit in 

Figure 6 will now be given to show that the unbalanced signal 

to the scope consists of an inductive and a resistive component 

and these are 90° out of phase with respect to each other. The 

problem of balancing the circuit when the sample is absent, 

thus obtaining "bridge readings", will then be discussed. The 

circuit equations with the sample present will be discussed 

under "Treatment of Data". The procedure for balancing of the 

circuit is the same in the absence or presence of a sample. 

Referring to Figure 6, and Mg will be considered as 

one variable inductor, with associated resistance propor­

tional to has an associated resistance proportional 

to S2* The a.c. statement that the secondary voltage be zero 

is: 

fa + • ̂2 * *2 - «3 fa , * , g] IP = 0 

where d = % is the resistance associated with and 

S 2i ip is the primary current, j is the square root of -1, and 
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w is the frequency. Collecting imaginary and real components, 

we see that 

Mi = -Mg (imaginary) (2) 

and 

A + So = â d = M (real) (3) 
Rg + d + Rg Rg 

if d and R̂  are small compared to Rg. For this bridge, Rj = 

0.1 ohm, = 1 ohm, and Rg is variable from 0-1̂ 8 meg ohms. 

Rg was usually of the order of 200 ohms for the circuit used 

in this work, so the approximation made in (5) is valid to 

about 1 per cent. One therefore has two components to balance 

in order to make the signal from the secondary zero, and these 

are 90° out of phase with respect to each other. The inductive 

component is balanced with the variable inductance of the 

bridge, Mj_, and the resistive component is balanced by varying 

Rg. Each unit of bridge inductance corresponds to approxi­

mately 2 x lO"? henrys. Note that the magnitude of the 

resistive component is inversely proportional to Rg. Now it 

may be that the phase of the resistive component to be balanced 

is the same as that of the voltage pickup in the secondary 

obtained by varying Rg. The reversing switch, Rev., is thus 

provided to change the phase of the primary component tapped 

into the secondary. 

As mentioned above, externally synchronizing the X sweep 

of the scope with the oscillator signal allows identification 

of inductive and resistive components. The reason for this is 



www.manaraa.com

75 

that the external sync from the oscillator has the effect of 

making the phase angle constant between the X and Y sweeps, 

thus allowing a "locking" of the signal at a desired position 

on the scope screen. Once the signal is locked, an approxi­

mate null may be obtained by randomly varying inductive and 

resistive components. Usually the initial off balance signal 

will be large enough to saturate the amplifier, so the initial 

balancing is carried out with the amplifier gain turned low 

enough to obtain an unsaturated signal. Once a rough balance 

has been obtained, the gain of the amplifier may be increased 

and Mx and Rg randomly varied to obtain a fine balance. With 

the signal balanced to approximately zero, the position of the 

inductive out of balance signal is identified by unbalancing 

the signal with M̂ . The resistive out of balance signal will 

then be 90° out of phase with this signal. 

At the start of a susceptibility run, a fine balance was 

obtained, using the above method, with the sample in and out 

of the sample coils. Once this was achieved, the amplifier 

gain could be turned up to its maximum value, approximately 

10̂  referred to the input, and a fine balance obtained for 

each reading by adjusting the inductive, or resistive 

components. Which component to adjust was obvious from the 

position of the signal on the scope screen, since positions 

for inductive, and resistive off balance had previously been 

identified. 
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Treatment of Data 

Heat capacity measurements 

The treatment of the raw data in the heat capacity 

measurements was the same as described by Skochdopole (203), 

but the calculations were programmed to be carried out on the 

IBM 650 computer by D. R. Fitzwater and L. D. Jennings of this 

laboratory. Essentially the computer would calculate a heat 

input and an initial and final temperature from the thermom­

eter and heater voltage data, and then calculate the ratio of 

the energy input to the temperature difference. Specifically, 

the computer would fit the temperature-time points of the 

rating periods to a straight line using the method of least 

squares. After all the drifts had been calculated, the machine 

would look at the mean deviation from the least squares 

temperature-time line for the points of each rating period. If 

the deviation exceeded a value which would lead to an error in 

the AT of greater than half the expected experimental error, 

the drifts of two rating periods on each side of the rating 

period in question were fitted to a least squares straight line 

of drift versus temperature and the drift in question re­

evaluated to fit the line. The criterion for whether or not 

a point should be re-evaluated could be varied. Provision was 

also made to correct drifts for the initial and final points of 

a set ôf readings. All the drifts were corrected if the 

readings were such that the AT's were small. 
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Magnetic susceptibility measurements 

The individual measuring a physical property with an eye 

towards correlating theoretical and experimental work must 

ask; (1) What have I measured? (2) What have I calculated? 

(3) What is the relationship between the two? These questions 

are so obvious that they are sometimes overlooked, and the 

reason for stating them here is the ease with which confusion 

can result from failure to ask them about the type of 

susceptibility measurement described in this work. 

In principle, one places a paramagnetic sample in a 

mutual inductance coil and measures the change in mutual 

inductance due to the presence of the sample. This procedure 

is carried out with the sample at various temperatures, and 

the raw data obtained are mutual inductance "in" and "out" 

readings, and vapor pressure measurements over the coolant 

bath, or thermocouple e.m.f. readings. The problem of 

relating pressure or e.m.f. readings to temperature is 

relatively straightforward. The problem of relating a change 

in mutual inductance to a calculated susceptibility is one in 

which particular care must be exercised in answering question 

3, above. 

For a paramagnetic material, 

S = XÎyHo (4) 

where M is the magnetic moment per unit volume, y</0 is k'Tf x 

10~7 henrys/meter in M.K.S. units, %, the magnetic 
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susceptibility, is a symmetric dyadic, and H is the magnetic 

field intensity vector. In an isotropic solid, or along one 

of the principal axes of a single crystal, M and H are 

parallel. The problem of relating a measured change in 

inductance, hereafter referred to as AI, to a calculated 

susceptibility, is the question of what is H. The problem 

arises because one is attempting to relate a property of an 

atom to a microscopically measurable entity. For certain 

simple geometrical configurations, the H related to the 

macroscopic is exactly calculable, and equals Ho/1 + N 

This statement is equivalent to H = Ho - MM. Here, Ho is the 

external field, and M is the so-called demagnetization factor 

which physically arises from the surface magnetization of the 

material in question, and mathematically arises from the 

boundry conditions involved in a magnetostatic treatment of 

the problem. N turns out to be zero for an infinitely long 

needle aligned parallel to H, and one for a very thin disc 

whose axis of rotation is parallel to H. For a sphere, it is 

equal 1/3. Thus far, the magnetostatic treatment of the 

problem involves no ambiguity because a macroscopic% has 

been considered in a macroscopic treatment. One ordinarily 

is interested, however, in calculating X from atomic 

(microscopic) considerations and in relating a macroscopic 

to microscopic % by using the discipline of statistical 

mechanics. In this case, H is the field on the atomic system 
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in question, rather than the effective field on the sample as 

a whole. One must therefore include, along with the external 

field and the demagnetization field, the so-called dipole field 

due to the magnetic dipoles surrounding the magnetic dipole 

whose moment we are interested in. The difference between the 

microscopic and macroscopic treatment of the problem is thus 

the taking into account of the dipole field. The dipole field 

has been the subject of much misunderstanding, and the reader 

is referred to Van Vleck (204) for a summary of past work, and 

the Van Vleck solution. The important point for this work is 

that the magnitude of the dipole field is approximately that 

of the magnetization of the sample, and the direction is 

opposite to that of the demagnetization field, so the two tend 

to cancel. The external field and the field at the atom in 

question, therefore, may be approximated as being equal. This 

approximation becomes poor as the magnitude of the suscepti­

bility approaches unity. How poor it becomes will in general 

depend on how poorly the demagnetization field is canceled by 

the dipole field. For the remainder of this discussion, it 

will be assumed that the external field is equal to the field 

at the site of the individual magnetic dipoles. It will be 

seen that the error involved in the assumption is less than 

the total experimental error. 

The following reasoning is involved in a rough calculation 

relating AI to X $ 
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1. The mutual inductance between a primary and a second­

ary is defined as the flux linkage per unit primary current. 

2. The total flux goes as the total magnetic induction, 

B. 

3« The total B due to a sample is approximately the 

total M of the sample, which in turn equals X/U0HV, where V 

is the volume of the sample in the system of units one is 

using. 

4. Since the H that the sample sees is ni where n is the 

turns per length of primary in the presence of the sample, the 

flux picked up by the secondary will go as nm' X VyUQi. Here 

m' is turns per length of sample, i.e., the number of 

"effective" turns of the secondary that pick up the flux due 

to the sample. AI due to the sample will therefore go as 

nm'XVyU0, which dimensionally has units of inductance. If 

the volume of the sample is recognized as the length, l1, 

times an average area, A, then one may say 0 = nm'X Al'ytf Qi, 

where the proper identification between the flux and B times 

an area is made. Thus AI = pXV, (6) where p is a geometrical 

factor. 

Using standard alternating current theory, the statement 

that the magnetic moment of the sample need not be exactly in 

phase with the primary current is X = X' - j X". X' and X" 

are callsd the real and imaginary components, respectively, of 

the dynamic susceptibility. Referring to the circuit equations 
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discussed under experimental procedure, magnetic susceptibility 

measurements, we see that the following is obtained: 

j- jwVp( X1 - jX«) + R3AR2d/R22} ip = 0 (5) 

where AI is the change in M-̂ , and AR2 is the change in R2, 

respectively, needed to balance the signal from the bridge 

circuit due to the sample in the sample coils. Therefore 

X « = AIi/pV (6) 

X "  = R3AR2d/R22pVw (7) 

and X " / X *  =  R3AR2d/R22wAI. (8) 

The easiest way to accurately determine p is to calibrate the 

sample coils with a material of known susceptibility. 

A sample of ferric ammonium alum was used to calibrate 

the coil used for the perpendicular susceptibility measurement 

and the perpendicular susceptibility of TmE.S. was used to 

calibrate the coil used in the parallel susceptibility measure­

ments. The alum sample had approximately the same volume as 

the TmE.S. crystals. Ferric ammonium alum is known to follow 

Curie's law to 1°K (203) and has a magnetic moment correspond­

ing to a spin of 5/2. Thus, to convert AI to X' for a given 

sample, AI is multiplied by the reciprocal of an experimentally 

determined constant times the sample volume. Ordinarily X11 

is small compared to X1 above 1°K, so in effect, X = ALj/pV. 

A measurement of 4°K showed that X "/ X1 was less than 0.001. 

This measurement was made by suspending the sample, in a 

plexiglass sample holder, by a thread and measuring AR2. This 
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datum could not be obtained from a measurement of ARg of the 

sample in its wired sample holder because the thermocouple and 

heater wires contributed a.c. losses which added to the signal 

from the sample. 

was found to be I.369 x 10~3 for the coil used in the 

perpendicular susceptibility measurements, and 2.654 x 10~3 

for the coil used in the parallel susceptibility measurements, 

where the volumes of the crystals were taken to be in the units 

of cm3. A pycnometric measurement of the density of TmE.S. 

gave the value of 2.004 g (cm3)""\ This value agreed, to 

within 0.1 per cent, with the value obtained by extrapolating 

a smooth curve of density versus atomic number for the rare 

earth ethylsulfates from LaE.S. to ErE.S. For a given crystal 

of mass m, therefore, the conversion of AI to X is made by 

multiplying AI by 2.004(pm)"̂ . For the perpendicular suscept­

ibility measurements, the conversion was X± = 2.743 x 10"̂ AI/k. 

For the parallel susceptibility measurements, the conversion 

was Xu = 5.319 x 10-3AI/m. 

Note that the reason the density of the sample is involved 

is that the desired result is a "text book" dimensionless X; 

i.e., the standard text book treatment of magnetic suscepti­

bilities yields a formula which, for a single atomic moment, 

has dimensions of volume. Upon multiplication of this formula 

by the number of atoms per unit volume, a dimensionless number 

is obtained. This procedure is aesthetically pleasing because 
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from our definition of X as the magnetic moment divided by 

the field, both of which have the same dimension, we expect x 
to be dimensionless. If, however, the atomic susceptibility 

is multiplied by Avagadro's number rather than the number of 

atoms per unit volume, a molar X is obtained which has 

dimensions of volume. Since the measured entity is really a 

susceptibility per gram, the calculated and measured results 

are related by the molecular weight, which is known to a higher 

accuracy than the densities. In order to conform with text 

book practice and thereby reduce the amount of confusion to 

the uninitiated reader, however, dimensionless susceptibilities 

will be used in this work, and a knowledge of densities is 

necessary. 

Vapor pressure measurements over the liquid He and over 

liquid Hg and Ng baths were converted to temperatures on the 

19̂ 8 International Temperature Scale through the use of the 

tables published by C. T. Linder (205). In the check 

measurements on X„ of TmE.S., temperature versus vapor 

pressure data on the CĤ . and the Ĉ Hg liquid baths were 

obtained, to within 2°K on the 1927 International Temperature 

Scale, from data published by R. I. Copson and Per K. Frolich 

(206). 

The Au-Co, Au-Ag thermocouple was used for measurements 

above 4.2°K. A few calibration points of e.m.f. versus 

temperature were taken, as described under "Experimental 

Procedure, Magnetic susceptibility measurements", and the 
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e.m.f. versus temperature curve was assumed to have the same 

shape as Shirker's curve, mentioned in the description of the 

susceptibility apparatus. Once a temperature-e.m.f. relation­

ship was established for one temperature, a difference in 

e.m.f. between this thermocouple and Shirber's, for a given 

temperature, was known. It was also known that the difference 

between the e.m.f.'s of the two thermocouples was zero at 

273»15°K. Thus two fixed calibration points were established, 

and the difference in e.m.f. between the two thermocouples 

was assumed to vary linearly between zero at the ice point and 

the value obtained at the first calibration point above 1.3°K. 

Once this difference, as a function of temperature, was known, 

e.m.f.1 s on the thermocouple used in this work could be 

converted to e.m.f.'s, and thus temperatures on Shirber's 

scale. 
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RESULTS 

Heat Capacity Measurements 

The results of the heat capacity measurements of LuE.S. 

and TmE.S. plus the calorimeter are tabulated in Tables 1 and 

2, respectively. The experimental points deviated from a 

smoothed curve by greater than 0.1 per cent above 30°K in a 

few isolated cases. Note that there are three series of 

measurements, a, b, and c for each salt. These were taken 

for the following reason: In the initial runs on the Lu salt 

a bump was observed in the AQ/AT versus T curve of the sample 

plus the can in the region 220-2?5°K. Since the can had been 

previously measured and no such anomaly found in it alone, and 

since no anomaly was expected in the Lu salt, it was assumed 

that the salt had an impurity present. After preparing and 

rerunning of a new sample of the LuCEtSOi+Ĵ .SHgO, it was 

concluded that the impurity could be nothing but water occluded 

in, or adsorbed on the salt particles. Vapor pressure measure­

ments of the equilibrium Lu(EtS0̂ .9Hg0(s) c » LuCEtSÔ )̂ . 

xHgOCs) + H2O(g) at 25°C showed the pressure of HgO over the 

salt to be 1.8 mm, quite concievably lower than the partial 

pressure of water in the laboratory atmosphere at room 

temperature, so one would expect the salt to adsorb water 

under laboratory conditions. At first it was thought that 

sealing the salt in the calorimeter can and removing HgO from 

it until the pressure was lowered to the equilibrium value of 
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Table 1. Experimental values of AQ/AT, in joules (deg)"̂ , for 
Tm(CgĤ 80̂ )g.9Hg0 plus the calorimeter can 

Mean T Mean T 
AT (°K) AQ/AT AT (°K) AQ/AT 

Series A 0°C = 273.15°K 

Run 1 Run 2 

3.7829 15.416 3.726 4.4569 14.247 3.108 
2.9882 19.864 6.360 2.7602 17.866 5.022 
3.4209 24.081 9.118 2.8613 20.682 6.803 
5.4738 28.538 12.504 5.2313 28.579 12.535 
n.464f 7.4645 35.006 17.850 7.4923 34.951 17.811 
6.6437 42.061 2i.855 9.2536 43.327 24.926 
5.4587 48.114 28.996 7.2230 51.568 31.860 
6.0730 53.882 33.753 6.1647 58.263 37.266 
6,7928 60.316 38.909 5.4851 64.092 41.830 

Run 3 Run 4 

6.7713 49.461 30.110 5.9886 55.592 35.125 
5.7773 55.737 35.252 8.5562 62.868 40.854 
5.1363 61.194 39.598 7.4679 70.883 46.680 

7.150 44, 
. . 74.429 . - , . 
7.0545 81.849 54.135 8.2283 92.926 60.812 

6.7715 67.150 44.073 6.7515 77.995 51.552 
7.7826 74.429 49.148 7.4324 85.092 56.210 

6.5319 88.645 58.413 6.4288 100.257 64.779 
6.1510 94*988 61.966 6.1147 106.531 68.034 
5.8798 101.006 65.137 5.8516 112.517 71.025 
7.3202 107.611 68.613 7.8213 119.355 74.305 
6.9501 114.749 72.150 10.5605 128.549 78.523 

10.9329 123.693 76.352 9.9816 138.823 82.963 
10.4119 134.368 81.095 II.3651 149.501 87.320 

9.7197 144.437 85.293 10.8181 160.596 91.625 
9.2968 153.946 89.087 8.6644 170.341 95.224 
4.1718 160.684 91.692 8.3867 178.869 98.285 
4.1012 164.824 93.252 8.1387 187.132 101.197 
1.0175 166.778 93.899 9.4742 195.939 104.229 
1.0143 167.795 94.185 10.7009 206.034 107.560 
8.8307 172.718 96.067 10.3585 216.571 111.012 

10.1956 182.232 99.482 10.0344 226.770 114.490 
9.8383 192.256 102.982 1.0139 231.283 
9.5384 201.944 106.167 9.7324 235.639 117.827 
9.2566 211.342 109.310 4.5855 242.786 124.956 
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AT 
Mean T 
(°K) AQ/AT AT 

Mean T 
(°K) AQ/AT 

Run 3 (Cont.) Run 4 (Cont.) 

8.7232 
8.4164 
8.0168 
6.7384-
7.4618 
8.9759 
8.7692 
8.5426 
8.3535 

9.6771 
9.4082 
9.1793 
4.5040 
4.4054 
4.3654 
4.2905 
4.1301 
4.0816 
4.1871 
4.1437 
8.1594 
9.3153 
9.1097 

230.663 
239.229 
247.434 
254.792 
261.895 
270.105 
278.960 
287.601 
296.062 

Run 1 

212.373 
221.911 
231.193 
238.207 
242.656 
247.033 
251.352 
255.5%? 
259.654 
263.766 
267.916 
274.050 
282.773 
291.972 

115.810 
119.954 
125.855 
149.646 
135.076 
130.918 
133.922 
137.387 
140.423 

108.465 
111.462 
114.142 
116.236 
118.793 
II9.838 
121.888 
126.580 
128.045 
124.781 
126.054 
127.958 
130.673 
133.530 

4.5719 
4.3750 
3.6657 
3.8957 
4.4365 
4.3864 
8.6187 
8.4342 
8.2454 
8.0610 

Series B 

5.7742 
5.2021 
6.0317 
5.5533 
6.7601 
7.1106 
7.9568 
7.4686 

i s  
8.3825 
7.6778 
7.3971 
2.4100 
2.3840 
7.0898 
6.88O3 
8.3458 
9.6850 
9.3672 
9.0862 
8.8331 
9.4564 
9.2041 
8.9615 

247.3̂ 3 
251.797 
255.802 
259.592 
263.748 
268.156 
274.646 
283.178 
291.498 
299.625 

Run 2 

60.150 
65.638 
71.256 
77.049 
83.207 
90.144 
97.680 
105.394 
II3.8IO 
122.902 
131.504 
139.536 
147.074 
151.978 
154.376 
159.114 
166.099 
173.713 
182.728 
192.253 
201.480 
210,440 
220.029 
229.353 
238.425 

125.289 
130.882 
156.154 
146.897 
128.954 
130.386 
132.658 
135.479 
138.490 
141.584 

l 8.421 , 2«??4 
46.540 
50.477 

8:8S 
62.852 
66.963 
71.024 
75.290 
79.100 
82.485 
85.543 
87.454 
88.382 
90.187 
92.782 
95.520 
89.665 
101.895 
104.942 
107.851 
110.893 
113.825 
116.814 
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Table 1. (Cont.) 

Mean T Mean T 
AT ( °K) AQ/AT AT (°K) AQ/AT 

Run 2 (Cont.) 

8.6982 247.241 120.257 
8.2442 255.698 126.791 
8.3634 263.982 124.900 
8.1931 272.241 127.410 
8.0336 280.337 129.860 
7.8873 288.268 132.354 
7.7231 296.049 134.910 

Run 3 Run 4 

2.8823 17.990 5.215 2.4320 17.437 4.721 
2.3881 20.860 6.771 5.0982 21.195 7.036 
4.6713 24.410 9.284 4.4969 25.990 10.416 
3.9560 28.722 12.511 4.7945 30.634 14.037 
9.0074 35.199 17.836 9.2965 37.680 19.905 
6.5675 43.000 24.406 6.9026 45.780 26.757 
5.4330 49.000 29.458 5.7588 52.112 32.021 
5.8126 54.624 34.040 5.0656 57.526 36.358 

Series C 

Run 1 Run 2 

3.6425 24.937 9.614 4.1910 27.721 11.690 
4.6295 29.081 12.755 5.2120 32.419 15.455 
7.5384 35.164 17.748 6.5942 38.322 20.396 
5.7212 41.796 23.329 6.8634 45.050 26.078 
6.2612 47.787 28.373 

Run 3 Run 4 

9.6172 204.092 104.098 6.8022 85.743 56.026 
9.2009 213.500 .108.719 8.5982 93.445 60.439 
8.9639 222.598 111.476 7.9852 101.781 64.875 
8.7478 231.443 114.130 9.5915 110.572 69.315 
8.5302 240.073 116.940 9.OOO3 119.871 73.746 
8.3276 248.492 119.695 8.5266 128.636 77.730 
8.0516 256.671 123.713 10.4899 138.151 81.778 
7.9976 264.685 124.556 9.4139 148.107 85.789 
7.8419 272.591 126.828 8.3574 156.993 89.208 
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Table 1. (Cont.) 

Mean T 
AT ( °K) AQ/AT 

Run 3 (Cont.) 

8.9612 280.975 129.384 
8.7714 289.828 132.079 
8.5868 298.485 134.816 

Mean T 
AT (°K) AQ/AT 

Run 4 (Cont.) 

8.7244 165.533 92.367 
8.4346 174.110 95.447 

Table 2. Experimental values of AQ/AT, in joules (mole-deg)"̂ 3 

for Lû Ĥ SOijJg .9H20 plus the calorimeter can 

Mean T Mean T 
AT (°K) AQ/AT AT (°K) AQ/AT 

Series A 0°C = 273.15°K 

Run 1 

5.6065 202.841 105.965 
9.3884 210.328 108.422 
9.1330 219.585 111.353 
9.9052 228.596 114.113 
8.6959 237.416 116.770 
8.4957 245.993 119.443 
9.2912 254.374 122.306 
8.0319 262.526 126.167 
7.9703 270.516 127.074 
9.1333 278.434 129.264 

Series B 

Run 1 Run 2 

3.6175 17.814 5.791 0.6064 20.920 7.735 
2.7852 21.011 7.530 1.5026 21.975 8.371 
2.7825 23.782 9.590 1.3456 23.403 9.349 
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Table 2. (Cont.) 

AT 
Mean T 
(°K) AQ/AT AT 

Mean T 
(°K) AQ/AT 

Run 1 (Cont.) Run 2 (Cont.) 

3.2623 
3.6108 
5.0522 
5.O834 
5.7763 
6.7493 
5.8165 
5.2018 
4.7783 
5.6829 
6.0354 
6.7349 
6.2935 
6.6680 
6.3238 
6.0426 
5.8034 
5.5958 
7.5400 
7.2440 
6.9901 
6.7687 
6.5744 
6.3993 
6.2426 
6.0998 
5.9692 
7.4914 
9.7128 
9.4256 
9.1651 
8.6861 
8.7223 
8.5196 
8.3280 
8.0717 m 
7.7035 
7.5648 

26.796 
30.232 
34.559 
39.632 
45.058 
51.323 
57.604 
63.115 
68.107 
73.340 
78.252 
84.639 
91.156 
97.640 
104.139 
IIO.325 
116.249 
121.952 
128.522 
135.916 
143.036 
149.918 
156.592 
163.080 
169.401 
175.574 
181.610 
188.291 
196.891 
206.453 
215.743 
224.663 
233.358 
241.972 
250.387 
258.579 
266.594 
274.502 
282.258 
289.874 

11.792 
14.458 
18.027 
22.306 
26.929 
33.195 
37.331 
41.700 
45.374 
49.015 
52.317 
56.501 
60.362 
63.859 
67.232 
70.290 
73.124 
75.776 
78.666 
81.808 
84.708 
87.415 
89.937 
92.337 
94.601 
96.761 
98.824 
101.094 
103.888 
106.971 
109.931 
112.713 
115.362 
118.033 
120.678 
124.441 
125.608 
127.881 
130.190 
132.509 

3.0412 
3.3086 
4.1010 
4.4877 
3.8096 
2.0787 
1.9496 
1.8413 
1.7514 
1.6730 
1.6052 
1.5474 
1.4918 
1.4450 
6.9538 
0.7825 
0.7704 
0.7602 
0.9789 
2.7505 
2.6358 
2.3662 
2.2942 
2.2307 
2.1736 
2.1205 
2.0765 
2.0351 
1.9970 
1.9625 
1.9290 
1.9015 
1.8808 

25.597 
28.770 
32.486 
36.781 
40.931 
43.876 
45.891 
47.787 
49.585 
51.298 
52.937 
54.515 
56.036 
57.505 
61.706 
62.969 
63.747 
64.514 
65.385 
67.251 
69.947 
77.067 
79.399 
81.664 
83.868 
86.017 
88.117 
90.174 
92.192 
94.174 
96.121 
98.039 
99.931 

% 

10.880 
13.309 
16.314 
19.902 
23.417 
25.926 
27.644 
29.267 
30.763 
32.199 
33.554 
34.798 
36.089 
-24? 

0.584 
41.570 
42.231 
42.803 
43.439 
44.778 
46.673 
51.553 
53.156 
54.630 
56.043 
57.424 
58.676 
59.871 
60.997 
62.054 
63.III 
64.097 
64.815 

Run 1 (Cont.) 

7.4420 297.354 134.600 
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Table 2. (Cont.) 

Mean T Mean T 
AT (°K) AQ/AT AT ( °K) AQ/AT 

Run 3 Run 4 

2.1446 20.359 7.300 0.6147 19.698 6.931 
2.2500 22.549 8.795 0.7160 20.360 7.327 
1.9409 24.651 10.203 0.8751 21.151 7.812 
1.7191 26.479 11.526 0.8166 21.996 8.375 
2.0101 28.341 12.954- 0.9403 22.870 8.979 
.2.1412 30.417 14.598 0.6393 23.520 9.423 
2.6550 32.815 16.560 1.0489 24.364 9.997 
2.3543 35.321 18.676 O.9772 25.379 10.733 

0.9196 26.328 11.411 
0.8692 27.221 12.077 
1.3001 28.304 12.924 

Series C 

Run 1 Run 2 

0.3223 11.855 2.609 0.2775 11.861 2.576 
0.4011 12.212 2.699 O.3IOO 12.157 2.786 
0.6189 12.720 3.055 0.8871 12.758 3.029 
0.5598 13.307 3.379 0.7779 13.581 3.4-56 
0.8190 14.005 3-686 0.8638 14.405 3.936 
0.7308 14.783 4.134 0.7874 15.228 4.321 
0.9336 15.617 4.532 0.9252 16.070 4.797 
1.1008 16.627 5.103 0.8427 16.950 5.269 
O.986O 17.663 5.700 1.0204 17.883 5.806 
0.8978 18.614 6.262 1.2376 19.035 6.501 

20.768 7.618 0.8407 20.073 7.182 
21.697 8.181 0.7931 20.892 7.616 

0.7423 21.659 8.140 

1.8 mm would be sufficient to insure that the excess water had 

been removed from the sample. This was not the case, however, 

as the salt still had a bump in the heat capacity in the range 

220-275°K when this method was used. Apparently the 
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equilibrium was not established in the time allowed. It was 

finally decided to use the heat capacity measurements them­

selves as analysis of the water in the sample. With an unknown 

amount of water in the sample, the heat capacity was run in 

the range 12-300°K, and the enthalpy under the bump in the 

range 220-275°% evaluated. These runs are called Series A. 

A given amount of water was then pumped off the sample, the 

heat capacity in the high temperature range re-run, and the 

difference in enthalpy under the bump obtained in the first 

and second runs evaluated. The second runs are called Series 

B. Assuming that the water removed was proportional to this 

difference, enough water was then removed from the sample to 

bring the enthalpy under the bump to zero. These measurements 

are labeled Series C. In practice, the enthalpy under the 

bump was never completely removed, but enough was removed to 

insure that further removal would not lower the heat capacity 

of the sample by more than 1/3 of the experimental error. 

For example, in the "Lu salt A" runs, the enthalpy under 

the bump was 260 joules. Then 0.593 g of EgO was removed from 

the sample and the enthalpy under the bump lowered by 217 

joules. The lowering of the heat capacity at 100 and 200°K 

was 0.9 and 1.1 per cent, respectively. Then 4-3 x 0.593/217 = 

0.12 g of HgO should have been removed from the sample in order 

to reduce the bump to zero. Actually, about 0.10 g of HgO was 

pumped from the sample, and the enthalpy under the bump 
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reduced to 13 joules. The heat capacity between runs B and C 

was lowered 0.1 per cent at 200°K, which is the experimental 

accuracy in the measurement of AQ/AT. Further removal of 

water to lower the bump to zero would not have lowered the heat 

capacity by more than 0.03 per cent. The reason for the 

indeterminateness in the amount of water pumped from the sample 

is that in the pumping process a small amount of salt was also 

removed, and only the weight of the salt plus the water 

removed could be measured. 

Since in runs B on the Lu salt the heat capacity of the 

salt plus excess HgO had been accurately determined in the 

range 15-300°K, the entire temperature range was not covered 

in runs C. Instead, some points were taken in the range of 

15-30, 55-100, and 150-220°K. The heat capacity of the salt 

in C was then determined over the range 12-200°K by plotting 

the difference between a smooth curve through the points in B 

and the points in C as a function of temperature, interpolating 

the curve through the temperature range not covered in C and 

performing the required subtraction. 

The water in the TmCEtSOi+̂ Ê̂ O was removed in the same 

manner as in the Lu salt. A run, Series A, was made in the 

range 200-280°K and the enthalpy under the bump found to be 

30.1 joules. It was assumed that the excess enthalpy per gram 

of water was the same for the Tm salt as for the Lu salt and 

enough water was removed from the salt to reduce the bump 
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sufficiently such that further removal of water would result 

in no appreciable change in the heat capacity below 200°K. 

When the salt was re-run (Series B) through this range, it was 

found that the bump containing 14 joules still remained. This 

was somewhat fortuitous, since the difference in the heat 

capacities of the two salts was the desired quantity, and the 

errors introduced by the excess water would tend to cancel, 

particularly as nearly the same number of moles of each salt 

were measured. Series B covered the range from 12-300°K. 

After Series B was completed, it was found that the resistance 

of the leads from the thermometer to the measuring circuit was 

not infinite, even when the measuring circuit was disconnected. 

The actual resistance was found to be on the order of 10̂  ohms, 

measured on a Simpson meter. The cause was traced to an 

electrical contact between all of the thermometer leads due 

to the presence of soldering salts. These salts had been used 

for soldering the leads from the thermometer to a bank of 

knife switches, but had not been completely cleaned off of the 

panel to which the knife switches were attached. Since this 

effect on the heat capacity measurements would be small in any 

case, but larger below 20°K, where small AT1s were taken, than 

in the high temperature region, it was decided to re-run the 

Tm salt in the region 12-30°K after cleaning the knife switches. 

The results, labeled Series C, were a few tenths of a per cent 

higher and not as erratic as the measurements in Series B below 
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20°K, but agreed with B above 20°K to within experimental 

error. For this reason, the results of Series B were 

neglected below 20°K, but were used above 20°K since the 

effect was not appreciable. 

The magnetic heat capacity of thulium ethylsulfate was 

then obtained from the raw data with the use of the following 

considerations: The raw data give AQ/AT of 1/7.994 moles of 

LuE.S. plus the calorimeter can, and AQ/AT of 1/7.981 moles of 

TmE.S. plus the calorimeter can. Care was taken to make 

AQ/AT of the can the same for both salts, and to make the 

number of moles of each salt nearly the same for both sets 

of measurements. These precautions were taken to minimize 

the error involved in subtracting out the contribution of the 

can. 

There were 0.0016 more moles of TmE.S. than LuE.S. in the 

AQ/AT measurements. The magnetic contribution of the Tm will 

therefore be given by 

Cm = 7.981 [(AQ/AT TmE.S. plus can) - 1.0016 (AQ/AT 

LuE.S. plus can) + (0.0016 AQ/AT can) - AC(T) 1 (9) 
7.9ÏÏ1 J 

where AC(T) is the difference in the lattice heat capacities 

of TmE.S. and LuE.S. The third term in the brackets is to take 

into account that 0.0016 too much of the AQ/AT of the can was 

subtracted out in the second term. Note that the only place 

the contribution of the can alone comes into the calculation 

of Cm is the third term above. Since AQ/AT of the can was 



www.manaraa.com

96 

about 1/3 that of the can plus sample, a knowledge of the can 

values to within 10 per cent was sufficient to insure that the 

can term would contribute less than experimental error in the 

above formula. 

The problem is now one of making a reasonable assumption 

concerning AC(T) such that the magnetic entropy lies near the 

value of R Ln(2J +1) which, for Tm is 21.26 joules(mole) 

\ As one goes to higher atomic numbered rare earths, there 

are 2 opposing effects in the lattice contribution of the 

salts. The first is the lowering of the characteristic 

frequencies of the rare earth atom associated with an increase 

in mass across the series. The second is the shrinking of the 

unit cell, and more particularly, the contraction of the metal 

-water distances. Fitzwater and Rundle (8) have shown that 

the unit cell dimensions decrease a few hundreths of an 

angstrom from PrE.S. to ErE.S., but the metal-water distances 

decrease by 0.1 A. One might therefore expect that the 

increased mass of the metal atom would be compensated for by 

the higher stretching frequencies associated with the smaller 

metal-water distances, and that the higher vibrational 

frequencies of the waters in the smaller unit cells would be 

the predominating effect. Even if the compensation of the 

stretching frequency versus mass effect for the metal atoms 

were neglected, the total effect due to the metal atom would 

be on the order of 1/9 of that due to the waters because of 



www.manaraa.com

97 

the ratio of metal atoms to water molecules. In summary, one 

would expect a lowering of the lattice heat capacities of the 

rare earth ethylsulfates as one goes to heavier rare earths. 

During the time that this work was in progress, Horst 

Meyer and P. L. Smith (112) published the heat capacities of 

7 rare earth ethylsulfates, including LaE. S., in the range 

1.3-20°K. The lattice contributions decrease as the atomic 

number of the rare earth increases. 

Meyer's data, together with my LuE.S. data at 20°K, give 

a reasonably smooth curve from which the lattice contribution 

of TmE.S. at 20°K may be obtained. The curve is shown as the 

solid line in Figure 8. The temperature 20°K was chosen at 

which to correlate Meyer's and my data, because my results 

become less accurate at lower temperatures due to the decreas­

ing sensitivity of the platinum resistance thermometer. 

AC(20°K) may be obtained from this curve. 

Since my measurements extend to 300°K, and the bump 

associated with the excess water only extends to about 270°K, 

there is a 30° interval above 270°K in which to evaluate the 

difference in the heat capacities of the TmE.S. and LuE.S. 

If the assumption is made that the magnetic contribution of 

the Tm salt is fully developed above 270°K, the differences 

in the lattice heat capacities of the 2 salts can be obtained 

to the extent that the difference in the Cp - Cv correction is 

neglected. For 2 isomorphous salts such as these, one would 



www.manaraa.com

Figure 8. C£ versus T for the rare earth ethylsulfates 



www.manaraa.com

i—r i—r 

CLTm = 4&05J/l^-

LINEAR EXTRAP 
=43 3 J/M 

THIS WORK 

J  I  L  J  I  I  I  I  L  
62 63 64 

ATOMIC 
65 66 
NO. 

67 68 69 70 71 



www.manaraa.com

100 

expect the Cp - Cv difference to be negligible compared to the 

observed difference in the lattice heat capacities. AC(300°K) 

may be there obtained from my data. 

In summary, the following information concerning AC ( T ), 

the difference in lattice heat capacities of TmE.S. and LuE.S., 

is available : (1) AC(20°K) from Horst Meyer's and my data. 

(Assumption involved: Magnetic contributions of Pr, Nd, Dy, 

and Yb ethylsulfates have been correctly evaluated.) (2) 

AC(300°K) from my data. (Assumption involved: The magnetic 

contribution of TmE.S. is fully developed at this temperature, 

and the difference in dilatation corrections is negligible.) 

If one assumes these two AC ( T ) ' s to be correct, the 

problem of how AC(T) varies between 20 and 300°K then arises. 

The simplest assumption to make is that it is a linear function 

of temperature in this range. 

Using the above reasoning to obtain AC(T) above 20°K, and 

taking the temperature dependence of the lattice heat capacity, 

CjQ, of TmE.S. to be the same as that of LaE.S. below 20°K, a 

Cm was obtained for TmE.S. which had an associated entropy of 

10.5 joules/mole. This value seemed quite low in comparison 

with the fully developed 21.26 joules/mole. Since greater than 

half of the "experimental" magnetic entropy was developed 

below 30°K, even with the above assumption concerning AC(T), 

it is certain that the measured entropy at 20°K contains a 

considerable fraction of the magnetic entropy at this 
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temperature. Since Meyer and Smith have no data for HoE.S. or 

ErE.S., and since their data for DyE.S. and YbE.S. are getting 

poor at 20°K, the above value of AC(20°K) may be too high, 

thus leading to a low value of Cm in a range where a large 

part of the magnetic entropy is developed. It was therefore 

P0 considered advisable to re-examine the C£ curve to see if a 

lower value of AC(20°K) could be justified. 
on 

There are three indications that a lower for TmE.S. 

and thus a lower AC(20°K) than one obtains using Meyer and 

Smith's data might be expected$ The first is that using this 

assumption, the "experimental" magnetic heat capacity has a 

peak at 16°K which compares favorably, to within experimental 

error, with a Schottky curve calculated for a doubly degenerate 

level at 32 cm-"*" above the ground state, and shown as the 

dotted line in Figure $. The existence of this level in TmE.S. 

has been verified by workers in this laboratory and elsewhere. 

The second is that the region in which my data are compared 

with Meyer's is one in which his estimates of lattice contribu­

tions are becoming poor. For instance, one sees that his 

observed peak for PrE.S. agrees well with a Schottky curve on 

the low temperature tail of the peak, but is higher on the 

higher temperature side. If a contribution from another state 

at higher temperatures is occurring, this is the direction in 

which one would expect the experimental curve to vary from the 

calculated curve. If this is not the case, however, raising 
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the lattice contribution of the Pr salt would have the effect 

of lowering the magnetic peak to the calculated value and 

20 would tend to make the versus atomic number curve more 

linear. Admittedly this effect would be less than 0.1 joule 

(mole-degat 20°K, but would be a maximum of 0.4 joule 

(mole-deg)"""̂  at 12°K. 

At the other end of the series, one sees that the ob­

served curve for DyE.S. lies lower than the calculated curve 

in the region above the peak. It would be hard to understand 

this in terms of anything but the estimated lattice contribu­

tion being too high. In this case, the lattice contribution 

would have to be decreased by 0.8 joule (mole-deg)"̂  at 20°K 

to bring the experimental and calculated curves into agree­

ment. This is still within the claimed limits of accuracy of 

Meyer's data, and would also have the effect of "linearizing" 

20 
the C£ versus atomic number curve. 

A lowering of the lattice contribution of YbE.S. could 

be understood if the measurements of Meyer and Smith include 

a magnetic contribution that has not been taken into account. 

Meyer and Smith do say that no Schottky anomaly was detected 

for the Yb salt, so the next excited level lies at least 60°K 

above the ground doublet. Since a doublet 60°K above the 

ground doublet would contribute 7.84 joules (mole-deg)"̂  to 

Cm at 20°K, I find their statement misleading. Their claimed 

accuracy at 20°K is +0.68 joules ( mo le-deg In order to 
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contribute less than this at 20°K, a level would have to lie 

at least 170°K above the ground state. The entire situation 

regarding the heat capacity data of YbE.S. is somewhat ambig­

uous. Cooke, et al. (Ill) carried out the measurements but 

published no data. They state that an attempt to fit the tail 

of a Schottky curve with their data showed none existed in the 

region in which they carried out measurements, i.e. 1-20°K, so 

the first excitea doublet must lie at about 70°K. If they 

really meant that the peak due to the level would be at 70°K, 

then the level would lie approximately 150° above the ground 

state. A doublet 150° above the ground state would contribute 

approximately 0.8 joule (mole-deg)"̂  to Cm which is slightly 

greater than the experimental error claimed by Meyer and Smith, 

who published the YbE.S. data in the form of a curve of C/T2 

versus T. It appears not impossible that a magnetic contribu­

tion exists in YbE.S. at 20°K, and if this is the case, one 

must necessarily lower the estimated lattice contribution to 

account for it. 

The third positive indication that the lattice heat 

capacities of the heavier rare earth ethylsulfates are closer 

to a linear interpolation between the La and Lu salts is the 

low value of 43.0 joules (mole-deg)""̂  for Ĉ  of Y E.S. The 

unit cell and metal-water distances in Y E.S. are equal to 

those in ErE.S.̂  to within 0.011, and the atomic weight of Y 

is roughly half that of Er. The latter effects would tend to 
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OA 

lower C£ relative to ErE.S. One may obtain a rough idea of 

the lowering due to the mass effect by using the harmonic 

oscillator approximation for the frequency change, and 

assuming the average characteristic frequency of the Er ion 

to be nearly the same as in Er metal (207). Making this 

calculation, and assuming that the metal atom contributes 3/64 

of the total heat capacity of the salt (to obtain a reasonable 

upper limit), one obtains 1.95 joules (mole-deg)""•*• for the 

difference. The difference obtained using the smoothed curve 

in Figure 4 is 4.3 joules (mole-deg)~̂ . It thus appears 

reasonable that cĵ  of ErE.S. could be at least 2 joules (mole 

deg) below the value obtained from the interpolation of 

Meyer and Smith's data. 

If a linear interpolation of the lattice heat capacities 

is made between LaE.S. and LuE.S. at-20°K, the lattice contri­

bution of TmE.S. is lowered from the value obtained using 

Meyer's data by 2.75 joules (mole-deg) \ It is interesting 

to note that this lowering gives a value of AC(T) which is 

lower than the value obtained from my data at 300°K by only 

0.4 joules (mole-deg)"̂ . The value of AC(T) obtained using 

the linear extrapolation between LaE.S. and LuE.S. is AC(20°K) 

= 1.78 joules (mole-deg)'l. 

If the value of 1.78 joules (mole-deg)"*"*" for AC(T) is 

assumed to be constant in the range 20-300°K, a magnetic heat 

capacity is obtained with an associated magnetic entropy of 
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18.0 joules (mole) at 300°K. The error in the magnetic 

entropy caused by neglecting the difference between the value 

of AC(20°K) and AC(300°K) is less than the error involved in 

integrating under the magnetic heat capacity curve from 12-300 

°K, so the difference in the two AC(T)1 s was ignored. 

The assumption that AC(T) is approximately constant in 

the range 20-300°K really makes more sense than assuming it 

to vary from a high value at 20°K to a low value at 300°K for 

the following reasons: (1) The lattice contribution of these 

salts at 300°K is only 1/3 of the fully developed value of 3R 

per atom. (2) If one considers two atomic Debye heat capacity 

curves with characteristic frequencies such that C at 300°K 

is approximately R, and AC at 300°K is 0.39 joule (mole-deg)-1, 

then these curves are nearly parallel in the range 20-300°K. 

The value of O.39 joules (mole-deg)~̂  is the contribution, per 

water molecule, to the difference in the lattice heat 

capacities at 20°K between TmE.S. and LuE.S. (Here the 

assumption is made that all of the difference in the lattice 

contribution between TmE.S. and LuE.S. is attributable to the 

waters of hydration.) 

The implication that I wish to make of the above 

?0 
discussion is that C£ of TmE.S. is closer to the value of 

4-3.3 joules (mole-deg)"̂  than 45.05 joules (mole-deg)"̂ . 

Since it would be possible that another peak that would 

contribute RLn(l + g), where g is the degeneracy of the state 
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giving rise to the peak, exists below 15°K or above 300°K, in 

Cp of TmE.S., I would find it hard to close the door to the 

possibility of Meyer and Smith's Cjĵ 's being correct. Present 

spectroscopic evidence indicates, however, that the first 

level above the ground state is the 32 cm~l state mentioned 

above. The purpose of this discussion is not to discredit 

Meyer and Smith's assumptions, but to point out that my data 

are not inconsistent with their results because of the uncer­

tainty of the magnetic contributions lor DyE.S. and YbE.S. at 

20 °K. 

One further remark should be made concerning the heat 

capacity data reported in this work. Above 35°K, Cm of TmE.S. 

was seldom greater than one per cent of the total heat capacity 

and below 35 degrees the measurement error increased to the 

extent that in no case could the magnetic contribution be 

obtained to an accuracy of better than 20 per cent. This 

takes into account the fact that the individual measurements 

of LuE.3. and TmE.S. were each accurate to 0.1 per cent above 

35°K. 

The smoothed curve of the magnetic capacity of TmE.S., 

obtained using a value of 1.78 joules (mole-deg)""'" for AC(T) 

is shown in Figure 9» The experimental points differed by 

more than 15 per cent from this curve in only b cases. 

In Table 3 are given the results obtained for Cm of 

TmE.S. obtained by subtracting the proper quantity from the 
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Figure 9. Cm of TmE.S. 
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Table 3. Experimental values of Cm of Tm(EtS0k)o.9H20, joules 
(mole-deg) , values below 20°K obtained using for­
mula 10, values above 20°K obtained using formula 9 
1 mole = 706.88 g, 0°C = 273-l5°K 

T °K cm T °K Cm 

11.855 5.32 25.379 4.39 
11.861 5.07 25.598 4.31 
12.157 5.74 26.329 4.15 
12.212 4.86 26.480 4.15 
12.720 6.14 26.796 5.83 
12.758 5.82 27.221 4.07 
13.308 6.57 28.304 4.07 
13.582 6.19 28.341 4.07 
14.005 6.43 28.770 4.31 
14.406 6.92 30.232 4.31 
14.783 6.90 30.418 3.99 
15.229 6.56 32.487 4.55 
15.618 6.82 32.816 4.39 
16.627 6.67 34.559 4.39 
16.950 6.46 35.321 4.47 
17.663 6.39 36.781 4.39 
17.815 6.41 39.632 4.23 
17.884 6.09 40.932 4.47 
18.615 6.01 43.876 4.95 
19.036 5.76 45.058 4.55 
19.698 5.48 45.692 4.79 
20.074 5.43 47.788 5.03 
20.360 4.95 49.585 5.27 
20.360 5.19 51.298 5.27 
20.769 4.63 51.323 5.H 
20.893 4.71 52.938 5.51 
20.920 5.67 54.516 5.19 
21.012 3.19 56.037 5.83 
21.152 4.87 57.506 5.75 
21.659 4.79 57.605 5.75 
21.698 4.95 61.707 6.15 
21.976 4.95 62.969 6.62 
21.996 4.95 63.115 6.68 
22.550 5.00 63.747 7.18 ' 
22.870 4.87 64.515 7.02 
23.404 4.79 65.385 7.10 
23.521 4.47 67.251 7.02 
23.782 4.55 68.107 7.42 
24.365 4.47 69.947 6.86 
24.652 4.39 73.340 7.02 

T °K cm 

77.068 6.94 
78.252 6.70 
79.399 7.42 
81.664 7.42 
83.868 7.5 0 
84.640 7.18 
86.017 7.74 
88.117 7.66 
90.175 7.58 
91.156 6.94 
92.193 7.42 
94.175 7.10 
96.122 7.18 
97.641 10.37 
98.040 7.02 
99.932 4.87 
104.140 6.78 
110.325 6.40 
116.250 6.38 
121.953 6.46 
128.528 5.75 
135.917 5.19 
143.037 5.H 
149.918 4.87 
156.592 4.55 
163.038 4.45 
169.402 3.99 
175.575 3.43 
181.610 2.95 
188.292 3.03 
196.891 2.63 
206.454 2.31 
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experimental values of AQ/AT of TmE.S. plus the calorimeter 

can, and performing the required multiplication to obtain the 

molar Cm. The value of of TmE.S. is taken to be 1.78 

joules (mole-deg)"*"''. Below 20°K, the temperature dependence 

of the lattice contribution in TmE.S. is taken to be the same 

as that of LaE.S., which is obtained from Meyer and Smith's 

data. The points listed in Table 3 below 20°K are thus 

obtained from the formula 

CM = 7.981 [AQ/AT (can + TmE.S.) - AQ/AT can - CT.(T) ]. (10) 
7.981 J 

Above 20°K, formula 9 is used to obtain C . Table 4 lists the 
m 

smoothed data of AQ/AT versus T for the can used for both the 

LuE.S. and TmE.S. measurements. Figure 10 shows the smoothed 

curve of the heat capacity of TmE.S. Since the heat capacity 

curves for TmE.S. and LuE.S. are the same to within a few per 

cent, and the magnetic contribution of TmE.S. is not visible 

on a scale suitable for being placed in this size cover, the 

heat capacity curve of LuE.S. is not included. The smoothed 

values of Cp of LuE.S. are given as a function of temperature 

in Table 5« 

Magnetic Susceptibility Measurements 

The results of the perpendicular and parallel 

susceptibility measurements on TmE.S. are listed in Tables 6 

and 7» respectively, and typical experimental points are shown 

in Figures 11 and 12. Note that rationalized units are 
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Table 4. AQ/AT, joules (deg)-1, of the calorimeter can used 
for heat capacity measurements of TmE.S. and LuE.S. 
salts - points taken from a smoothed curve 

T °K AQ/AT T °K AQ/AT T °K AQ/AT 

10 0.18 70 15.72 200 31.95 
12 0.23 80 18.45 210 32.32 
14 0.35 90 20.81 220 32.72 
16 0.50 100 22.80 230 33.06 
18 0.70 110 24.40 240 33.36 
20 0.93 120 25.86 250 33.67 
25 1.71 130 27.10 260 33.94 
30 2.83 140 28.10 270 34.20 
35 4.20 150 29.01 273 34.28 
40 5.78 160 29.75 280 34.44 
45 7.45 170 30.40 290 34.67 
50 9.20 180 30.99 300 34.89 
60 12.64 190 31.48 310 35.16 

Table 5» Smoothed values of Cn, joules (mole-deg)""̂  for 
LuCCoHtfSOi. ),.9Ho0* -P1 mole = 712.4? g, 0°C = 
273-l55K. * 

T °K 
CP 

T °K 
CP 

T °K 
CP 

5 0.847 60 204.49 160 484.5 
10 8.47 70 238.62 170 508.8 
15 22.77 80 271.10 180 528.1 
20 42.36 90 304.81 190 555.3 
25 63.42 100 329.19 200 577.9 
30 85.22 110 356.7 275 745.68 
35 107.20 120 383.7 280 756.7 
40 128.14 130 409.5 290 779.0 
45 148.69 140 435.0 295 802.7 
50 168.11 150 459.7 

295 

•Values below 20° obtained assuming the temperature 
dependence of Cp of LuE.S. is the same as that for LaE.S. 
measured by Meyer and Smith. 
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Figure 10. Cp of TmE.S. 
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116 

T °K Xrîtxl02 T °K Xrî xl02 

Run No. 2 (Cont.) Run No. 5 

121.4 0.276 1.4? 1.561 
127.9 0.259 1.97 1.555 
134.3 0.242 2.37 1.555 
146.3 0.224 2.36 1.545 
154.4 0.213 3.36 1.540 

4.20 1.539 
Run No. 3 13.5 1.390 

14.5 1.355 
80.5 0.405 15.6 1.326 
84.1 O.383 17.6 1.275 
87.3 0.367 19.6 1.205 
99.6 0.323 21.9 1.130 
105.0 O.3O6 23.9 1.072 
112.9 0.283 27.1 0.985 
120.5 0.265 30.8 0.899 
127.8 0.248 34.8 0.812 
137.9 0.231 40.4 0.725 
145.9 0.217 47.9 0.633 
156.4 0.202 54.7 0.574 
169.2 0.185 59.6 O.523 
181.4 0.173 69.4 0.460 
193.7 0.162 78.3 0.414 
206.5 0.153 85.0 0.379 

94.0 O.343 
Run No. 4 100.8 0.320 

108.7 0.297 
80.5 0.407 117.5 0.274 
88.2 0.379 127.1 0.251 
91.9 O.359 139.8 0.228 
102.8 O.33O 151.2 0.211 
111.4 0.300 162.4 0.195 
119.9 0.277 170.1 0.176 
132.0 0.254 192.0 0.159 
141.1 0.231 202.6 0.147 
162.8 0.208 
169.1 0.197 
180.5 0.185 
197.0 0.173 
199.8 0.167 
207.5 0.161 
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Table 7. Experimental values of Xr̂  for TmCCpĤ SOh.)̂  .9H?0 
molecular weight = 706.88 g, density = 2.00 g (cm3)~l 
0°C = 273.15°K 

T °K Xr̂ txl0L|' T °K X.̂ txiô  T °K Xr»txl01+ 

Crystal No. 4 186.1 10.29 6.0 2.81 
191.2 10.29 7.2 1.87 

Run 1 196.3 10.91 8.0 1.39 
201.4 10.91 8.6 2.18 

32.1 5.30 204.0 10.91 11.4 1.71 
33.0 5.46 12.3 1.71 
35.2 6.08 Run No. 2 13.0 2.06 
36.7 6.08 13.7 2.06 
43.4 6.55 30.4 4.37 14.4 2.34 
45.8 7.02 31.3 4.37 15.0 2.50 
49.7 7.17 32.2 4.37 15.7 2.50 
51.6 7.64 33.4 5.14 16.9 2.06 
54.3 7.95 34.7 5.77 17.6 2.06 
57.2 8.11 35.6 6.92 18.3 2.06 
60.6' 8.26 36.5 5.92 19.0 2.34 
64.0 . 8.42 37.2 5.92 19.6 2.34 
67.2 9.04 38.2 6.08 20.2 2.65 
70.3 9.20 39.0 6.24 21.1 2.80 
73.4 9.35 40.0 6.39 21.7 3.59 
79.5 9.82 41.2 6.24 23.1 3.74 
82.4 9.82 41.8 6.39 24.0 4.05 
82.4 9.82 42.8 6.55 24.8 4.21 
85.3 10.29 25.6 4.36 
88.1 10.91 Run No. 3 26.4 4.83 
93.7 10.91 27.9 4.99 
99.4 11.07 1.40 8.10 29.4 5.12 
105.0 11.07 1.46 8.10 32.1 5.30 
110.5 11.07 1.61 6.70 34.3 5.62 
115.9 11.38 1.75 5.92 36.5 5.77 
123.9 11.54 1.91 6.70 38.6 5.92 
129.2 II.38 2.05 7.32 40.6 5.92 
134.6 II.38 2.17 6.40 42.6 6.40 
139.8 
145.0 

10.91 2.37 5.77 44.6 6.40 
10.45 2.63 2.49 46.6 6.55 

150.3 10.45 2.82 1.87 58.8 7.80 
155.4 10.45 3.12 1.71 62.2 8.42 
160.6 10.4% 3.34 1.87 65.4 8.88 
165.8 9.98 3.57 0.46 68.5 9.20 
171.0 9.98 3.79 1.25 71.7 9.20 
176.1 9.98 4.01 1.09 74.8 9.20 
181.1 9.98 4.19 1.25 77.8 9.35 



www.manaraa.com

118 

Table ?• (Cont.) 

T °K X^xlO1* T °K r%txio^ T °K X ^ Î̂O1* 

Crystal No. 5 14.25 2.69 
15.63 3.27 

Run la 16.88 3.94 
16.93 4.03 

1.37 7.49 20.18 3.65 
1.52 6.63 20.18 4.32 
1.76 5.95 c 
1.97 5.76 Run 3 
2.13 5.38 
2.32 5.67 63.3 5-57 
2.58 5.19 63.3 5.67 
2.87 5.57 65.6 4.90 
3.17 5.19 67.5 6.15 
3.34 5.09 69.8 5.57 
3.55 4.60 72.7 6.53 
3.77 5.28 74.7 6.72 
4.02 3.52 77.3 6.53 

Run 2b Run 4e 

10.0 3.94 63.3 4.91 
13.95 3-55 63.3 5.91 
13.95 4.03 63.3 6.48 
13.95 3.55 66.5 5.78 
13.95 4.51 68.7 4.51 
14.38 2.79 71.5 4.51 
15.50 3.07 73.5 6.10 
16.63 3.75 75.1 6.77 
17.87 3.27 77.3 6.72 
18.80 3.64 
20.37 3.74 Run 5 

Run 3b 1.43 6.48 
1.65 7.86 

13.9 3.94 1.84 6.67 

aLiquid He used as bath and thermometer 

L̂iquid Hg used as bath and thermometer 

cLiquid Ng used as bath and thermometer 

80.7 9.35 
83.6 9.35 
86.5 9.66 
89.3 9.66 
89.3 9.66 
92.2 9.82 
95.0 10.14 
97.8 10.29 
100.0 10.29 
103.5 10.60 
106.2 10.60 
109.0 10.91 
111.7 10.91 
117.2 11.05 
122.5 11.05 
127.8 11.23 
I33.I 11.23 
138.4 11.70 
143.7 11.70 
148.9 12.16 
154.0 12.16 
159.2 12.31 
164.3 12.94 
169.5 13.25 
174.6 13.10 
179.7 13.10 
184.7 12.94 
189.2 12.94 
194.9 12.78 
200.0 12.78 
205.1 12.64 
210.2 12.16 
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Figure 11. Rationalized perpendicular susceptibility of TmE.S. 
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Figure 12. Rationalized parallel susceptibility of TmE.S. 
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employed throughout this work. As mentioned under "Experimen­

tal Procedure, Magnetic susceptibility measurements", three 

different crystals were used for the measurements of the 

perpendicular susceptibility, hereafter referred to as X j.» 

and three crystals were used for measurements of X„> the 

parallel susceptibility. The crystals used for Xx measure­

ments were designated as crystals numbers 1, 2, and 3. 

Measurements below 20°K were made on crystals numbers 1 and 3* 

Five runs were made above 1.3°K on crystal number 2. The 

precision of the measurements was one per cent below 20°K, 2 

per cent below 100°K, ana ranged from 2 to 20 per cent at 100 

to 210°K, respectively. The determination of the absolute value 

of Xx was limited by the coil calibration, knowledge of 

d̂ipole below 100°K, and the precision of the measurements 

above 100°K. The coil calibration was precise to 0.5 per 

cent. Since the density of the ferric ammonium alum used for 

the calibration was only known to 0.5 per cent, however, the 

absolute accuracy of the calibration was only good to one per 

cent. The limitations, coupled with the precision of the Xx 

data, made the absolute value of Xx good to 2 per cent below 

100°K, neglecting Hdip0̂ e, and between 2 and 20 per cent from 

100 to 200°K. 

The absolute value of % measured using a calibrated 
* 

coil is dependent upon the knowledge of the dipole field 

discussed under "Treatment of Data, Magnetic susceptibility 
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measurements". This limitation is inherent in the measurement 

because the difference in the local fields between the salt 

used for calibration, and the salt whose susceptibility is 

measured, is ignored. As stated before, H = HQ + Hdemag# + 

Hdipole- For a sphere Hdeoag- = -M/3/.o- H^poie w111 be on 

the order of magnitude of M/̂ «0 ( Van Vleck, 204), so that H 

will differ from HQ by something smaller than M/3yt/o> most. 

If one makes the worst assumption possible, namely that H - H0 

error associated with ignoring the difference in Ho and K 

will be 0.5 per cent and the total maximum error in the 

absolute value of % 1 will lie below 3 per cent. Because of 

the extremity of value assumed for H-Ho, however, it is 

probable that the value of Xj. obtained experimentally lies 

within 2 per cent of the true value. 

The crystals used for X measurements were designated 

as crystals numbers 4 and 5* The % n measurements on crystal 

number 4 were badly scattered below 30°K, and were associated 

with a relatively high value of ARg, the change in the bridge 

resistive component with the sample in, and out of the coils. 

Above 30°K the precision improved, and ARg became comparable 

to the values obtained in the measurements of Xx. A short in 

the leads wrapped about the sample holder was determined to be 

then the absolute magnitude of a X determined 

by neglecting H will be off by(l0̂ /̂ y(per cent. Since the 

maximum X'j, measured in this work was 1.5 x 10"2, the maximum 
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the cause of the trouble. For this reason, a new, unwired 

sample holder was constructed, and X» of another crystal, 

crystal number 5> was measured in the range 1.3-4, 13-20, 

64-78, 90-110, and l40-210°K. Liquid He, H2, N2, CH ,̂ and 

CgHg were used as coolant baths and thermometers, as mentioned 

under "Treatment of Data, Magnetic susceptibility measurements". 

The scatter of the points taken in the above manner was 

relatively large, because of the impossibility of keeping the 

sample coils at a constant temperature. These data served, 

however, to positively establish the order of magnitude and 

shape of X» below 4°K, and give a rough check of the absolute 

magnitude above 13°K. None of the points differed by more than 

20 per cent from a smoothed curve between 1.3 and 2 °K, and 30 

and 200°K. Below 20°K, the points taken with the wired sample 

container were so irreproducible as to be useless. The He and 

Hg range points taken with the unwired container did not 

deviate from a smoothed curve by more than 30 per cent. One 

reason for the large experimental scatter in the JL\\ measure­

ments was the absolute magnitude of which was always less 

than 2 x 10"̂  in rationalized units, and which was approximately 

2 x I0~LF in the range 4-20°K. The value at 20°K corresponded 

to a AI reading of 0.040 on the bridge, and, in general, the 

bridge readings were reproducible to 0.005 at best, and about 

0.020 at worst. In terms of experimentally determinable 

absolute magnitudes, therefore, it is not surprising that the 
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measurements were imprecise. The absolute magnitude of 

therefore, was limited by the precision of the measurements, and 

in no case was obtained to better than 20 per cent. 
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DISCUSSION 

The Hamiltonian for an ion subject to an electrical 

potential V, and a magnetic field H, is usually taken to be 

H = |(-h2 7̂ 2/2m + Ze2/r1) + ̂  e2/r±j + f 5 (r1)̂ '| -

^ H e
y u 1 + ^ V e i  +  N  ( 1 1 )  

where m is the reduced mass of the electron, 7 2 is the 

Laplacian operator, Z is the atomic number, r̂  is the distance 

of the ith electron from the origin, r̂ j is the distance of 

the ith from the jth electron, 5(r̂ ) is the spin-orbit 

coupling parameter, is the magnetic moment of the ith 

electron, and N refers to all nuclear interactions. N is 

small enough compared to the effects we will be interested in 

to be neglected in this work. 

The use of the central field approximation to solve for 

atomic energy levels in the absence of an electric or magnetic 

field has been discussed by Conden and Shortley (160). The 

solution of the problem for trivalent Tm, in the case where 

the electrostatic repulsion terms are not very much larger 

than the spin-orbit coupling terms, has been discussed by 

Spedding (170), and recently recalculated by Gruber and Conway 

(190) using Spedding1 s original equations. The matrix elements 

of an electric potential possessing Ĉ  symmetry have been 

calculated for the lowest, and next higher J value in the rare 

earths by Elliot (9) and Elliot and Stevens (11), and the 
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matrix elements of the magnetic interaction are readily 

accessible if R-S coupling is assumed, so the solution of the 

entire problem for trivalent Tm has been, within the limits of 

the assumptions involved, set up in principle. 

It is generally assumed that because the rare earths have 

magnetic moments at room temperature which are in accord with 

their lowest J value, R-S coupling is a good approximation in 

the rare earths. It is also assumed, because Curie's, or the 

Curie-Weiss law, is followed at room temperature, that the 

crystal field splittings of the lowest J value are smaller 

than kT at 300°K. This is to say that the total crystal field 

splitting of the ground state is on the order of 200 cm \ 

Spedding (36) and later workers (190) have found that the 

first state above ground for trivalent Tm is separated from 

the ground by about 5>500 cm~\ Second order perturbation 

theory tells us that the contribution to splittings of the Jth 

state from higher states goes as the reciprocal of the 

unperturbed energy difference between the two states, and 

directly as the sum of the squares of the matrix elements 

connecting the two states. Since the order of magnitude of 

the matrix elements connecting two states is less than the 

total splitting of the individual states, we are dealing with 

a contribution of approximately (200̂ /5*5x10̂ )cm"̂  to a 

splitting of 200 cm~̂ , or about 2 per cent, from the first 

excited state in trivalent Tm, which is and less from 
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higher states. This contribution may be ignored in this work, 

since it will be seen that our knowledge of the crystal field 

parameters involves errors in the ground state splitting which 

are at least of the above order of magnitude. The crystal field 

splitting, then, may as a first approximation, be applied as a 

perturbation to the lowest state of trivalent Tm. This 

approximation will limit the dimension of the secular deter­

minant for Tm to 13. As in previous determinations of crystal 

field splittings at ground states (4), it may be assumed that the 

ground state is "pure" that is, the known deviation from 

R-S coupling in this ion may be assumed not to appreciably 

change the splitting of the ground state of the trivalent ion 

from that calculated using R-S coupling. 

To the approximation that the contribution from excited 

states is negligible and hyperfine splittings are ignored, the 

splitting caused by a crystal field V and magnetic field H, of 

the ground state is given by 

KJZ|V + ps(î, + 2S) - W6JZ/J£ |J£> = 0 (12) 

where I AI stands for "the determinant of A", the Dirac notation 

of matrix elements is used, and J2 ranges from 6 to -6. Here 

p(L + 28) is yUin the Hamiltonian, where p is the Bohr 

magneton. 

The case with H = 0 will be examined first. The crystal 

field assumption leads to the restriction that the crystal 

field potential must satisfy Laplace's equation, a solution of 
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which is V = where Ŷ  is a spherical harmonic. The 

condition that the potential remain invariant under the 

operations of the symmetry group of the crystal, which is 

for the rare earth ethylsulfates, leads to a restriction of 

the values of 1 - m to 2n, and m to 3k, where n and k are 

integers. A matrix element of V between 4f states will be 

of the form 

< 4, 3, m, ms\Vt4, 3, m«, r1 r2dr 

(13) 

Because of the orthogonality properties of spherical harmonics, 

this integral will vanish unless m = m' + M. Since a product 
m m1 

of two spherical harmonics Ŷ  Yj_i may be expressed as a sum 

of spherical harmonics l,m̂ l witia always involving (1 - 2i) 

+ (l1 - 2j) where i and j are zero or integers, and since in 

this case 1=1' (=3), the above sum will be even. Because 

jfyM yMj will vanish unless L = L1, L in (13) will be even 

and equal to or less than 6. Therefore, M will have to be 

even, so M will now be restricted to 6k where k is an integer. 

The crystal field potentials, then, that we are left with 

because of the crystal symmetry and the dimensionality of 4f 

wave functions are v£ (= C° < r°> x£), V̂ , v£, v£, and v|̂ . 

Thus each matrix element of V will be a sum involving one or 

more of these five terms. Vq is independent of L and M, 

however, and thus does not contribute to the splitting of the 

ground state. It only contributes an additive constant to all 
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levels, so it may be ignored in calculations of differences 

between split levels. 

Elliot and Stevens (10), (11), (12) have evaluated the 

non-vanishing matrix elements of these potentials in the 

representation which is diagonal in L, S, and J%. They 

used the fact that within a manifold in which J is constant, 

the matrix elements of potential operators are equal to a 

constant times the matrix elements of appropriate angular 

momentum operators. In Stevens' notation, we have a given J 

and Jz(Jz t v2lJẐ  = aA2 [ 3̂ | " + D] where here Â  = Cg 

< r2> <JZ|V?IJZ> = [35Jz - 30J(J + l)j| - + 25JZ -

6J(J + 1) + 3J2(J + l)2]where Ag = Ĉ <r̂ > 

<JZ1V§IJZ>= aA6 [23u| - 315J(J + 1)4 + 735Ĵ  + 105J2 

(J + 1)2J| - 525JU + l)j| + 294J§ - 5J3 (J + l)3 + 40J2 

(J + I)2 - 60J(J + 1)] SJ2J'Z where = eg <r6> 

<Jzlv6lJz>= 1/21(jx + iJy)6 + (Jx • 1Jy)6l 

Vg, vÇ and V5 are diagonal in and symmetric about = 0, 

and only has elements 6 off the diagonal. It too, is 

symmetric about = 0. For "pure" 3H&, Stevens has calculated 

the values of a, p, and Y to be 1/99, 8/3.11.1485, and 

-5/13*33.2079 respectively. Thus, the diagonal matrix 

elements of V will be given by a sum of the type aÂ A + pÂ B + 

YÂ J where A, B, and C are functions of Jg and J. The off 

diagonal elements of V will be of the form Â D. The values 

of A, B, C, and D versus (Jz,Jg) are given in Table 8. 
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Table 8. A, B, G, and D within J = 6 for Tm, 3%, in a Ĝ  crystal field 

Jz + 6 ± 5 + 4 + 3 ± 2 + 1 0 

Jz + 6 ± 5 + 4 ± 3 + 2 + 1 0 

A 66 33 6 -15 -30 -39 -42 

B 60 x 99 -60 x 66 -60 x 96 -60 x 54 660 3840 5640 

C 168,300 -420,750 61,200 328,950 168,300 -153,000 -306,000 

J z  ± 6 + 5 + 4 + 3  

Jg 0 +1 +2 + 3 

D 720 J 231 2520/66 5040/3Ô 30,240 
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To date, there have been two sets of crystal field 

parameters which have been available for the calculation of 

the energy levels of thulium in the ethylsulfate. The first, 

obtained from an extrapolation of these used in the paramag­

netic work on the rare earths (4) in the last half of the 

series are as follows: = 0. AÇ = -40cm~̂ . Â  = -30cm~̂ . 

a| = 330cm~\ These will be designated as "Case I constants". 

The second, obtained by Gruber and Conway (195) from spectro­

scopic data on TmE.S., are as follows : Ag = 13cm"-1-. Â  = 

-80cm""̂ . Â  = 32cm~̂ . Â  = 300cm""'". These will be called 

"Gruber's constants". Gruber's constants were chosen to give 

the best fit with the splitting of the jj. = 3 and yU = + 2 

subieveIs in the states and and "reasonable" 

splitting of the 3Fg, and states. Because of the 

symmetry of the secular equation, the determinant for 

calculating the zero magnetic field levels breaks into a 

cubic and five quadratics. These were hand calculated to 

give levels for both Elliots' and Gruber's field constants. 

Gruber and Conway, in addition to producing another set of 

field constants, also calculated the change in Stevens' a, (3 

and Y, due to off diagonal electrostatic repulsion terms in 

the Hamiltonian, i.e., due to the breakdown of the R-S 

coupling. The correction factors are, for the state, 

1.010, 0.976, and 0.986 for a, {3 and t , respectively. These 

corrected factors were used in the calculation of levels using 

Gruber's constants. The observed zero magnetic field energy 

levels versus the levels obtained using Case I and Gruber's 

constants are tabulated in Table 9* 

The energy levels in the presence of a magnetic field will 
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Table 9» Observed versus calculated energy levels for the 
ground state of Tm in TmE.S., g = degeneracy of level 

Observed g 
Case I 
constants g 

Gruber1 s 
constants g 

0 cm"1 1 0 cm~l 1 

1—1 1 n 0
 1 

32 2 8.17 2 34-.78 2 

195 2 77.62 2 93.04 1 

231 1 83.10 1 IOO.32 1 

84.06 2 124.36 2 

93.23 1 126.81 2 

113.80 1 177.25 1 

182.73 2 238.55 2 

225.68 1 277.53 1 

now be discussed. The energy term is the Hamiltonian involving 

interaction of electronic moments with a field, H, is * K. 

Because of the symmetry of the secular determinant for 

V + M * H, the negative sign may be omitted. If R-S coupling 

is assumed to hold, L and S are good quantum numbers, so 

Zju= £ (L + 2S) = gpj where g is the Lande splitting factor. 

Writing J in vector notation as Jxi + JyJ + J-tK, we see that 

2 = g{3H(a«Jx + bJy + cJg) where a, b and c are direction cosines 

for the angles between the x, y, and Z axes, and H respectively. 

For the axis of quantazation parallel to the crystal c axis, anrj 
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H parallel to the c axis, we have a = b = o, c = 1, and 

zin = For the perpendicular case in a crystal of ĉ  

symmetry, we have A2 + B2 = 1, c = 0 and 2JL = gpH(aJx + bJy) 

where now Z refers to the crystalline c axis. In the repre-

2 sentation in which J and are diagonal, the non-vanishing 

matrix elements of are just Jz on the diagonal, and the 

non-vanishing matrix elements of Jx and Jy are 

<J,JZ + 11 Jx(J, Jz> = l/2( tJ + Jzl [J ± Jz * 4 )V2 

and 

< J,JZ + 1 | JyjJ, Jz> = + 1/2([J + Jz] tJ + JZ + 1). 

The matrix elements for H« and Hx are given in Table 10. The 

elements given are coefficients of gpH. 

For H„, the energy calculation in terms of the crystal 

field matrix elements, and of G(= gpH) was carried out as 

follows: The cubic and 3 quadratics in the secular deter­

minant were each expanded in terms of E and G. E was then set 

equal to Eo + bG + cG2 + . the resulting expression 

expanded, and coefficients of G collected and set to zero. 

Since the Eo's were known from the zero field calculation, each 

coefficient of G could be solved for in turn. Thus each energy 

level was explicitly determined as a function of field. 

For H , the entire secular determinant was solved on the 

ISU Cyclone computor for values of G = 1/2, 1, and 2 cm"1. It 

is possible to show, for Hx, that in the expansion of the 

secular determinant a and b only occur in the combination 
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Table 10. Non-vanishing matrix elements of Jz and aJx + bJy 

JZ ±  6 ± 5  ±  ̂ ±3 ± 2 +1 0 

Jz +6 + 5  ±  4 +3 ±2 +1 0 

i 6 ±5 ±4" ± 1 ±2 +1 0 

J2 ± 6 ± 5 ±4- ±3 ±2 +1 

±5 ±4 +3 ±2 +1 o 

<\aJx + bJyt> ̂ 12(a+ib) f22(a+ ib) 3̂°(a+ ib) 4~36(a+ ib) ̂+Ô(a+ ib) -P+2(a+ lb) 
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a2 + b2. Therefore, only the coefficients of (a + ib) were 

fed to the computor. It is also possible to show, for Hi, 

that only even powers of G are involved in the secular 

determinant expansion. Each level was therefore expressed as 

E = Eo + cG2 + dû1* + eG6. 

Three values of E were obtained for the three values of 

G, so that c, d and e could be solved for. The coefficients 

of G and G2 were obtained in this manner for both Case I and 

Gruber's field constants. The calculation of the magnetic 

heat capacity and susceptibility were then made using the 

usual statistical mechanical formulae: 

C M  =  R _ T z 2  ( Ei\2e ~El/kT _ gi e "El/kT\ 2"1 = 
z2 V 1 XkTy Xi kT / J 

JL RT2 3 LnZ (14) 
9T 3 T 

where Z is the sum over states, k is Boltzmann's constant, and 

Ei is the difference between the ground and the ith level, and 

Xrat = (̂biê - 2c,)e "al/kT = NkT L̂nZ (15) 
' Z kT "H" a H 

where the ith level is expressed as 

Ei = â  + bjH + CjH2 and the standard subterfuge of 

expanding Z as a function of field is used ((208) pp. 608-619). 

N is the number of atoms per unit volume, or atoms per mole, 

depending upon whether a dimensionless, or molar susceptibility 

is desired. In this work, a dimensionlessTC has been 

calculated. This formula is only valid for 6H much less 
kT 
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unity - i.e. high temperatures or low fields. For a non-

degenerate ground level, ao = bo = 0. The results of the heat 

capacity and magnetic susceptibility calculations for the two 

sets of constants are shown in Figures 9, 11 and 12. 

From a comparison of calculated with experimental values 

of the ground state splittings in TmE.S., it is not obvious 

that either set of field constants yields a successful fitting 

of experiment with theory. Gruber's values do have among them 

the observed 32, 195 and 231 cm"*1, to within 20 per cent at 

worst, but this is not surprising since these levels were 

three of the four pieces of information used to evaluate field 

constants. The values calculated using the Case I constants 

appear completely unrealistic. A look at the experimental 

versus calculated heat capacity curves shows, however, that 

while Gruber's calculated level at 35 cm-1 gives the correct 

low temperature tail of the heat capacity, the levels below 

125 cm"1 must certainly be in error. If they existed, the 32 

cm" peak would not show up as a distinct bump at all. The Cm 

calculated from the Case I constants, while unreal, serves to 

illustrate the shape of a curve obtained when there is a 

separation of a factor of ten between the first and 

succeeding levels above ground - i.e., the Case I constants 

lead to a level of 8.17 cm"1 above ground, and a group of 

levels starting out 78 cm"1. They thus give a "two peak" 

structure to Cm. Gruber's first and second excited states are 
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separated only by a factor of three, and this structure is not 

obtained. One might thus be led to speculate that the 

separation between the 32 cm" and the next highest level 

would be of the order of five or six times 32, or at about 
-1 

190 cm , which is actually observed. Because of the height 

of the experimental peak, one might also be led to speculate 

that there are a number of closely packed levels in the region 

I9O-3OO cm"1. Since the absolute magnitude of the second peak 

is in doubt due to the uncertainty in the lattice heat 

capacity of TmE.S., however, such speculations have little 

quantitative value. 

The agreement between the calculated and experimental 

susceptibilities is, as might be expected, poor for the Case I 

constants. In both the parallel and perpendicular cases, it is 

obvious that the calculated value of 8.17 cm"1 for the first 

level above ground is causing both curves to break at too low 

a temperature. Note, however, that the slopes of the calcula­

ted and experimental perpendicular susceptibilities do not 

greatly differ once the two curves have broken from their 

constant values at 0°K. This is not the case, however, with 

the calculated and experimental parallel susceptibilities. 

For Gruber's constants, the calculated and experimental 

perpendicular susceptibilities agree to within experimental 

error, but the difference between the calculated and experi­

mental parallel susceptibilities again points up the indication 
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that the calculated curve involves too many levels coming in 

at too low a temperature. 

The reason for the really excellent agreement between the 

calculated and experimental perpendicular susceptibilities is 

not completely obvious. One thought might be that the perpen­

dicular susceptibility has a particularly simple form of 
-Ei/kT 

temperature dependence, i.e., XA = 4TT N 2 - 2C.e . The 
Z i 

C for the 32 cm level has been forced into a realistic 

value by using this level as one of the field constant 

determining parameters. Since it turned out to be positive, 

and possibly fortuitously, as large as any of the other 

coefficients, it will dominate the susceptibility at the 

low temperature downward break. That it continues its 

domination over a rather large temperature range seen from 

the fact that the sum of the Ĉ 's must equal zero, so for 

every negative that would tend to raise the susceptibility 

as its exponential factor approaches unity, there is a 

positive one that is counteracting this tendency. Since the 

exponential on the 32 cm"1 level is always larger than the 

others for a given temperature the tendency will be for this 

level to somewhat over-ride the superimposed effect of the 

others. I.e., once the correct downward "shove" is given Xj. 

at 32 cm"1, the remaining shape of the curve is somewhat 

predetermined, at least at temperatures less than the total 

crystal field splitting. 
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The same type of qualitative argument might be made for 

the parallel results, except that in this case the temperature 

dependence is more complicated, in that another parameter and 

a reciprocal temperature are involved. I.e., in the parallel 

case a coefficient of the linear term in H exists for the 

doubly degenerate levels, so each of these will contribute 

4TTN (bi2 - 2c. )e"̂ ^̂  to the susceptibility. It also turns 
Z vkT 1 

out that the C for the 32 cm"1 level is less by two orders of 

magnitude than the c's for the next two higher levels, so that 

as T increases and the b2/kT terms become less important, the 

next higher levels become more important than in the 

perpendicular case. For comparison, b| and ĉ  are given for 

the parallel case, and Cj_ is given for the perpendicular case 

in Table 11. Here, the energy levels are those calculated 

using Gruber's constants, and the b's and c's are coefficients 

of gpH and (gpH)2 respectively. If gpH is given in cm"1, b 

will be dimensionless and c will have the dimensions of 

(cm"1)"1. 

In retrospect, the following statement might be made: 

three assumptions are made in the calculation of energy levels 

of rare earth ions from first principles. These are: (1) the 

ion core possesses a spherically symmetrical charge distribu­

tion (central field approximation), (2) the electrostatic 

repulsion term is much greater than the spin-orbit coupling 

term for the ground state (this appears reasonable in view of 
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Table 11. Coefficients of G and G2 used in the calculation 
of „ and i - Gruber's constants 

x „  X i  E? 

ci Ci cm-1 

0 -.0267 -.573 0 

.0021 -.0521 +.4087 34.78 

.0021 -.0521 -.1104 34.78 

0 -4.535 -.0661 93.04 

0 4.627 -.1515 IOO.32 

.596 -.0521 +.0741 124.36 

.596 -.0521 -.2026 124.36 

16.25 .0521 +.1267 126.81 

16.25 .0521 +.0321 126.81 

0 -.0897 +.2708 177.25 

5.617 .0521 -.3132 238.55 

5.617 .0521 +.0762 238.55 

0 +.0897 +.3834 277.53 

of the small corrections to Stevens' a, p and r calculated by 

Gruber and Conway), (3) the Laplacian of the crystal field 

potential is zero. Using these assumptions and four 

experimentally determined parameters evaluated from four 

pieces of experimental information, the agreement between 

the experimental and calculated ground state splittings in 
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TmE.S., as evidenced by susceptibility and heat capacity 

measurements, leaves much to be desired. The perpendicular 

susceptibility measurements, however, give surprisingly good 

agreement with the calculated values using Gruber's constants, 

but it is not obvious that this is due to the corrected 

calculated energy level structure. Whether the observed 

disagreement between theory and experiment for TmE.S. lies in 

a breakdown in one or more of the above three assumptions,. or 

in an improper evaluation of the crystal field constants is 

yet to be determined. A critical factor in this determination 

will be whether any four constants exist that can reconcile 

the experimental thermal, magnetic, and spectral data with 

calculation. The obviously poor agreement, for TmE.S., 

between the experimental and calculated Cm, coupled with 

the "fair" agreement in the calculated and experimental 

susceptibilities accentuates the fact that it is possible to 

fit a susceptibility curve with relatively poor values of 

ground state splitting. It also points up the need for 

obtaining thermal data in the range 1.4-300°K for all the rare 

earth ethylsulfates, in order to determine whether or not the 

previous "good" agreement between experiment and theory below 

20°K can be extended to include all the splittings of the 

ground state. That a great deal of work is yet necessary, 

theoretically and experimentally in order to get a really 

good fit between calculated and experimental excited state 
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splittings, is a conclusion that could easily be defended. A 

calculation of the crystal field constants from first princi­

ples would be interesting as well as informative, and might 

serve to determine whether or not the currently published values 

are even in the neighborhood of being correct. 
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SUMMARY 

A description of the construction and operation of a 

mutual inductance magnetic susceptibility apparatus for 

measurements in the range 1.4-300°K has been given. Methods 

used in the treatment of data and calculation of results have 

been discussed. 

The magnetic heat capacity and the single crystal 

magnetic susceptibilities of TmE.S. have been measured in the 

range 12-300°K and 1.4-200°K, respectively. The magnetic 

heat capacity was obtained by using the heat capacity of 

LuE.S. to evaluate the lattice contribution to TmE.S. Two 

maxima were observed in the magnetic heat capacity at 19 and 

80°K. 

The magnetic heat capacity and susceptibilities of TmE.S. 

have been calculated using the crystalline field approximation 

and two different sets of crystalline field constants which 

are currently available from the literature. In neither case 

was excellent agreement obtained between theory and experiment, 

although the calculated and experimental perpendicular 

susceptibilities were in good agreement for the most recently 

proposed set of field constants. It is not obvious whether 

the lack of good agreement between experiment and theory is a 

result of a poor choice of crystal field parameters, a complete 

failure of the crystal field approximation in this case, or a 

breakdown of the assumptions involved in calculating the term 
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intervals and splittings for trivalent Tm. The fair agreement 

between calculated and experimental susceptibilities, coupled 

with the complete lack of agreement between calculated and 

experimental heat capacities points up the need for a further 

check of previous "good" theoretical and experimental 

agreement for other rare earth salts with the use of heat 

capacity data above 20°K. 
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